Suppr超能文献

鉴定调控 Plp1 表达的少突胶质细胞增强子。

Identifying oligodendrocyte enhancers governing Plp1 expression.

机构信息

Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.

出版信息

Hum Mol Genet. 2021 Nov 16;30(23):2225-2239. doi: 10.1093/hmg/ddab184.

Abstract

Oligodendrocytes (OLs) produce myelin in the central nervous system (CNS), which accelerates the propagation of action potentials and supports axonal integrity. As a major component of CNS myelin, proteolipid protein 1 (Plp1) is indispensable for the axon-supportive function of myelin. Notably, this function requires the continuous high-level expression of Plp1 in OLs. Equally important is the controlled expression of Plp1, as illustrated by Pelizaeus-Merzbacher disease for which the most common cause is PLP1 overexpression. Despite a decade-long search, promoter-distal OL enhancers that govern Plp1 remain elusive. We have recently developed an innovative method that maps promoter-distal enhancers to genes in a principled manner. Here, we applied it to Plp1, uncovering two OL enhancers for it (termed Plp1-E1 and Plp1-E2). Remarkably, clustered regularly interspaced short palindromic repeats (CRISPR) interference epigenome editing showed that Plp1-E1 and Plp1-E2 do not regulate two genes in their vicinity, highlighting their exquisite specificity to Plp1. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) data show that Plp1-E1 and Plp1-E2 are OL-specific enhancers that are conserved among human, mouse and rat. Hi-C data reveal that the physical interactions between Plp1-E1/2 and PLP1 are among the strongest in OLs and specific to OLs. We also show that Myrf, a master regulator of OL development, acts on Plp1-E1 and Plp1-E2 to promote Plp1 expression.

摘要

少突胶质细胞(OLs)在中枢神经系统(CNS)中产生髓磷脂,加速动作电位的传播并支持轴突完整性。作为 CNS 髓磷脂的主要成分,蛋白脂质蛋白 1(Plp1)对于髓磷脂的轴突支持功能是必不可少的。值得注意的是,这种功能需要 OL 中 Plp1 的持续高水平表达。同样重要的是 Plp1 的受控表达,例如 Pelizaeus-Merzbacher 病,其最常见的原因是 PLP1 过表达。尽管经过十年的研究,但仍未找到控制 Plp1 的启动子远端 OL 增强子。我们最近开发了一种创新的方法,可以原则上对基因进行启动子远端增强子作图。在这里,我们将其应用于 Plp1,发现了两个 OL 增强子(称为 Plp1-E1 和 Plp1-E2)。值得注意的是,CRISPR 干扰表观基因组编辑表明,Plp1-E1 和 Plp1-E2 不会调节其附近的两个基因,突出了它们对 Plp1 的高度特异性。高通量测序的转座酶可及染色质分析(ATAC-seq)和染色质免疫沉淀测序(ChIP-seq)数据表明,Plp1-E1 和 Plp1-E2 是 OL 特异性增强子,在人类、小鼠和大鼠中保守。Hi-C 数据显示,Plp1-E1/2 与 PLP1 之间的物理相互作用在 OL 中最强,并且是 OL 特异性的。我们还表明,OL 发育的主调控因子 Myrf 作用于 Plp1-E1 和 Plp1-E2 以促进 Plp1 表达。

相似文献

1
Identifying oligodendrocyte enhancers governing Plp1 expression.
Hum Mol Genet. 2021 Nov 16;30(23):2225-2239. doi: 10.1093/hmg/ddab184.
2
Uncovering oligodendrocyte enhancers that control Cnp expression.
Hum Mol Genet. 2023 Nov 17;32(23):3225-3236. doi: 10.1093/hmg/ddad141.
3
Identifying an oligodendrocyte enhancer that regulates Olig2 expression.
Hum Mol Genet. 2023 Feb 19;32(5):835-846. doi: 10.1093/hmg/ddac249.
4
Suppression of proteolipid protein rescues Pelizaeus-Merzbacher disease.
Nature. 2020 Sep;585(7825):397-403. doi: 10.1038/s41586-020-2494-3. Epub 2020 Jul 1.
5
A principled strategy for mapping enhancers to genes.
Sci Rep. 2019 Jul 30;9(1):11043. doi: 10.1038/s41598-019-47521-w.
6
Gene suppressing therapy for Pelizaeus-Merzbacher disease using artificial microRNA.
JCI Insight. 2019 May 16;4(10). doi: 10.1172/jci.insight.125052.
9
The wmN1 enhancer region in intron 1 is required for expression of human PLP1.
Glia. 2018 Aug;66(8):1763-1774. doi: 10.1002/glia.23339. Epub 2018 Apr 23.

引用本文的文献

1
Discovery of oligodendrocyte enhancers that regulate Sox10 expression.
PLoS Genet. 2025 Jul 11;21(7):e1011778. doi: 10.1371/journal.pgen.1011778. eCollection 2025 Jul.
2
The Role of Oligodendrocytes in Neurodegenerative Diseases: Unwrapping the Layers.
Int J Mol Sci. 2025 May 12;26(10):4623. doi: 10.3390/ijms26104623.
3
An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants.
Nat Commun. 2025 Feb 5;16(1):1373. doi: 10.1038/s41467-025-56378-9.
4
Locus coeruleus vulnerability to tau hyperphosphorylation in a rat model.
Aging Cell. 2025 Mar;24(3):e14405. doi: 10.1111/acel.14405. Epub 2024 Nov 9.
5
ImputeHiFI: An Imputation Method for Multiplexed DNA FISH Data by Utilizing Single-Cell Hi-C and RNA FISH Data.
Adv Sci (Weinh). 2024 Nov;11(42):e2406364. doi: 10.1002/advs.202406364. Epub 2024 Sep 12.
8
Single-cell and spatial omics: exploring hypothalamic heterogeneity.
Neural Regen Res. 2025 Jun 1;20(6):1525-1540. doi: 10.4103/NRR.NRR-D-24-00231. Epub 2024 Jul 10.
9
SRT-Server: powering the analysis of spatial transcriptomic data.
Genome Med. 2024 Jan 26;16(1):18. doi: 10.1186/s13073-024-01288-6.
10
Transcriptional profiles of non-neuronal and immune cells in mouse trigeminal ganglia.
Front Pain Res (Lausanne). 2023 Oct 31;4:1274811. doi: 10.3389/fpain.2023.1274811. eCollection 2023.

本文引用的文献

1
Functional mechanisms of MYRF DNA-binding domain mutations implicated in birth defects.
J Biol Chem. 2021 Jan-Jun;296:100612. doi: 10.1016/j.jbc.2021.100612. Epub 2021 Mar 30.
3
4
Suppression of proteolipid protein rescues Pelizaeus-Merzbacher disease.
Nature. 2020 Sep;585(7825):397-403. doi: 10.1038/s41586-020-2494-3. Epub 2020 Jul 1.
5
Preservation of a remote fear memory requires new myelin formation.
Nat Neurosci. 2020 Apr;23(4):487-499. doi: 10.1038/s41593-019-0582-1. Epub 2020 Feb 10.
6
Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory.
Nat Neurosci. 2020 Apr;23(4):481-486. doi: 10.1038/s41593-020-0588-8. Epub 2020 Feb 10.
7
mA mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination.
Neuron. 2020 Jan 22;105(2):293-309.e5. doi: 10.1016/j.neuron.2019.12.013. Epub 2019 Dec 31.
8
Saltatory Conduction along Myelinated Axons Involves a Periaxonal Nanocircuit.
Cell. 2020 Jan 23;180(2):311-322.e15. doi: 10.1016/j.cell.2019.11.039. Epub 2019 Dec 26.
9
Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice.
Neuron. 2020 Jan 8;105(1):150-164.e6. doi: 10.1016/j.neuron.2019.10.013. Epub 2019 Nov 18.
10
Brain cell type-specific enhancer-promoter interactome maps and diseaserisk association.
Science. 2019 Nov 29;366(6469):1134-1139. doi: 10.1126/science.aay0793. Epub 2019 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验