School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
Acc Chem Res. 2021 Jul 20;54(14):2916-2927. doi: 10.1021/acs.accounts.1c00215. Epub 2021 Jul 7.
Nanoparticles are widely used in various biomedical applications as drug delivery carriers, imaging probes, single-molecule tracking/detection probes, artificial chaperones for inhibiting protein aggregation, and photodynamic therapy materials. One key parameter of these applications is the ability of the nanoparticles to enter into the cell cytoplasm, target different subcellular compartments, and control intracellular processes. This is particularly the case because nanoparticles are designed to interact with subcellular components for the required biomedical performance. However, cells are protected from their surroundings by the cell membrane, which exerts strict control over entry of foreign materials. Thus, nanoparticles need to be designed appropriately so that they can readily cross the cell membrane, target subcellular compartments, and control intracellular processes.In the past few decades there have been great advancements in understanding the principles of cellular uptake of foreign materials. In particular, it has been shown that internalization of foreign materials (small molecules, macromolecules, nanoparticles) is size-dependent: endocytotic uptake of materials requires sizes greater than 10 nm, and materials with sizes of 10-100 nm usually enter into cells by energy-dependent endocytosis via biomembrane-coated vesicles. Direct access to the cytosol is limited to very specific conditions, and endosomal escape of material appears to be the most practical approach for intracellular processing.In this Account, we describe how cellular uptake and intracellular processing of nanoscale materials can be controlled by appropriate design of size and surface chemistry. We first describe the cell membrane structure and principles of cellular uptake of foreign materials followed by their subcellular trafficking. Next, we discuss the designed surface chemistry of a 5-50 nm particle that offers preferential lipid-raft/caveolae-mediated endocytosis over clathrin-mediated endocytosis with minimum endosomal/lysosomal trafficking or energy-independent direct cell membrane translocation (without endocytosis) followed by cytosolic delivery without endosomal/lysosomal trafficking. In particular, we emphasize that the zwitterionic-lipophilic surface property of a nanoparticle offers preferential interaction with the lipid raft region of the cell membrane followed by lipid raft uptake, whereas a lower number of affinity biomolecules (<25) on the nanoparticle surface offers caveolae/lipid-raft uptake, while an arginine/guanidinium-terminated surface along with a size of <10 nm offers direct cell membrane translocation. Finally, we discuss how nanoprobes can be designed by adapting these surface chemistry and size preference principles so that they can readily enter into the cell, label different subcellular compartments, and control intracellular processes such as trafficking kinetics, exocytosis, autophagy, amyloid aggregation, and clearance of toxic amyloid aggregates. The Account ends with a Conclusions and Outlook where we discuss a vision for the development of subcellular targeting nanodrugs and imaging nanoprobes by adapting to these surface chemistry principles.
纳米颗粒作为药物输送载体、成像探针、单分子跟踪/检测探针、抑制蛋白质聚集的人工伴侣和光动力治疗材料,广泛应用于各种生物医学领域。这些应用的一个关键参数是纳米颗粒进入细胞质、靶向不同亚细胞区室以及控制细胞内过程的能力。这是因为纳米颗粒被设计为与亚细胞成分相互作用以实现所需的生物医学性能。然而,细胞受到细胞膜的保护,细胞膜对外部物质的进入进行严格控制。因此,需要对纳米颗粒进行适当的设计,以便它们能够轻易地穿过细胞膜,靶向亚细胞区室,并控制细胞内过程。
在过去的几十年中,人们对细胞摄取外来物质的原理有了更深入的了解。特别是,已经表明,外来物质(小分子、大分子、纳米颗粒)的内化是尺寸依赖性的:材料的内吞摄取需要大于 10nm 的尺寸,而尺寸为 10-100nm 的材料通常通过生物膜包裹的囊泡通过能量依赖性内吞作用进入细胞。直接进入细胞质仅限于非常特殊的条件,而内体逃逸似乎是实现细胞内处理的最实际的方法。
在本叙述中,我们描述了如何通过适当的尺寸和表面化学设计来控制纳米级材料的细胞摄取和细胞内处理。我们首先描述细胞膜结构和细胞摄取外来物质的原理,然后描述它们的亚细胞运输。接下来,我们讨论了 5-50nm 颗粒的设计表面化学,该颗粒提供了优先通过脂筏/小窝介导的内吞作用,而不是网格蛋白介导的内吞作用,同时最小化内体/溶酶体运输或能量非依赖性直接细胞膜转位(无内吞作用),随后无内体/溶酶体运输的细胞质递送。特别是,我们强调纳米颗粒的两性离子疏水性表面特性提供了与细胞膜脂筏区域的优先相互作用,随后是脂筏摄取,而纳米颗粒表面较少数量的亲和生物分子(<25)提供了小窝/脂筏摄取,而带有胍基/精氨酸末端的表面和<10nm 的尺寸提供了直接的细胞膜转位。最后,我们讨论了如何通过适应这些表面化学和尺寸偏好原理来设计纳米探针,以便它们能够轻易进入细胞,标记不同的亚细胞区室,并控制细胞内过程,如运输动力学、胞吐作用、自噬、淀粉样蛋白聚集和清除有毒淀粉样蛋白聚集。本叙述以结论和展望结束,我们讨论了通过适应这些表面化学原理来开发亚细胞靶向纳米药物和成像探针的愿景。