School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):5451-5461. doi: 10.1021/acsami.3c14472. Epub 2024 Jan 24.
Nonendocytic cell uptake of nanomaterials is challenging, which requires specific surface chemistry and smaller particle size. Earlier works have shown that an arginine-terminated nanoparticle of <10-20 nm size shows nonendocytic uptake via direct membrane penetration. However, the roles of surface arginine density and the arginine-arginine distance at the nanoparticle surface in controlling such nonendocytic uptake mechanism is not yet explored. Here we show that a higher arginine density at the nanoparticle surface with an arginine-arginine distance of <3 nm is the most critical aspect for such nonendocytic uptake. We have used quantum dot (QD)-based nanoparticles as a model for fluorescent tracking inside cells and for quantitative estimation of cellular uptake. We found that arginine-terminated nanoparticles of 10 nm size can opt for the energy-dependent endocytosis pathway if the arginine-arginine distance is >3 nm. In contrast, nanoparticles with <3 nm arginine-arginine distance rapidly enter into the cell via the nonendocytic approach, are freely available in the cytosol in large amounts to capture the cellular adenosine triphosphate (ATP), generate oxidative stress, and induce ATP-deficient cellular autophagy. This work shows that arginine-arginine distance at the nanoparticle surface is another fundamental parameter, along with the particle size, for the nonendocytic cell uptake of foreign materials and to control intracellular activity. This approach may be utilized in designing nanoprobes and nanocarriers with more efficient biomedical performances.
纳米材料的非内吞细胞摄取具有挑战性,这需要特定的表面化学性质和更小的颗粒尺寸。早期的研究表明,<10-20nm 大小的精氨酸末端纳米颗粒通过直接细胞膜穿透表现出非内吞摄取。然而,纳米粒子表面的精氨酸密度和精氨酸-精氨酸距离在控制这种非内吞摄取机制中的作用尚未得到探索。在这里,我们表明,纳米粒子表面的精氨酸密度更高,精氨酸-精氨酸距离<3nm,是这种非内吞摄取的最关键方面。我们使用基于量子点(QD)的纳米颗粒作为荧光跟踪细胞内和定量估计细胞摄取的模型。我们发现,如果精氨酸-精氨酸距离>3nm,10nm 大小的精氨酸末端纳米颗粒可以选择能量依赖的内吞途径。相比之下,具有<3nm 精氨酸-精氨酸距离的纳米颗粒通过非内吞途径迅速进入细胞,在细胞质中大量自由存在以捕获细胞三磷酸腺苷(ATP),产生氧化应激,并诱导 ATP 缺乏的细胞自噬。这项工作表明,纳米粒子表面的精氨酸-精氨酸距离是另一个基本参数,与颗粒尺寸一起,用于非内吞细胞摄取外来物质,并控制细胞内活性。这种方法可用于设计具有更高生物医学性能的纳米探针和纳米载体。
ACS Appl Mater Interfaces. 2024-2-7
J Phys Chem B. 2020-12-31
Acc Chem Res. 2021-7-20
ACS Appl Mater Interfaces. 2023-8-23
ACS Appl Bio Mater. 2023-6-19
ACS Appl Mater Interfaces. 2024-7-24