Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany.
Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany.
mSphere. 2021 Aug 25;6(4):e0041121. doi: 10.1128/mSphere.00411-21. Epub 2021 Jul 7.
The study of gene expression in fungi has typically relied on measuring transcripts in populations of cells. A major disadvantage of this approach is that the transcripts' spatial distribution and stochastic variation among individual cells within a clonal population is lost. Traditional fluorescence hybridization techniques have been of limited use in fungi due to poor specificity and high background signal. Here, we report that hybridization chain reaction (HCR), a method that employs split-initiator probes to trigger signal amplification upon mRNA-probe hybridization, is ideally suited for the imaging and quantification of low-abundance transcripts at single-cell resolution in the fungus Candida albicans. We show that HCR allows the absolute quantification of transcripts within a cell by microscopy as well as their relative quantification by flow cytometry. mRNA imaging also revealed the subcellular localization of specific transcripts. Furthermore, we establish that HCR is amenable to multiplexing by visualizing different transcripts in the same cell. Finally, we combine HCR with immunostaining to image specific mRNAs and proteins simultaneously within a single C. albicans cell. The fungus is a major pathogen in humans where it can colonize and invade mucosal surfaces and most internal organs. The technical development that we introduce, therefore, paves the way to study the patterns of expression of pathogenesis-associated C. albicans genes in infected organs at single-cell resolution. Tools to visualize and quantify transcripts at single-cell resolution have enabled the dissection of spatiotemporal patterns of gene expression in animal cells and tissues. Yet the accurate quantification of transcripts at single-cell resolution remains challenging for the much smaller microbial cells. Widespread phenomena such as stochastic variation in transcript levels among cells-even within a clonal population-seem to play important roles in the biology of many microorganisms. Investigating this process requires microbial cell-optimized procedures to image and measure mRNAs at single-molecule resolution. In this report, we adapt and expand hybridization chain reaction (HCR) combined with split-initiator probes to visualize transcripts in the human-pathogenic fungus Candida albicans at high resolution.
真菌中的基因表达研究通常依赖于测量细胞群体中的转录物。这种方法的一个主要缺点是,在克隆群体中,转录物的空间分布和个体细胞之间的随机变化丢失了。由于特异性差和背景信号高,传统的荧光杂交技术在真菌中应用有限。在这里,我们报告说,杂交链反应(HCR)是一种使用分裂引发探针在 mRNA-探针杂交时触发信号放大的方法,非常适合在真菌白色念珠菌中单细胞分辨率下对低丰度转录物进行成像和定量。我们表明,HCR 允许通过显微镜对细胞内的转录物进行绝对定量,以及通过流式细胞术对其进行相对定量。mRNA 成像还揭示了特定转录物的亚细胞定位。此外,我们通过在同一细胞中可视化不同的转录物来证明 HCR 可进行多重化。最后,我们将 HCR 与免疫染色相结合,在单个白色念珠菌细胞内同时对特定的 mRNA 和蛋白质进行成像。真菌是人类中的主要病原体,它可以定植和侵袭黏膜表面和大多数内部器官。因此,我们引入的技术发展为在单细胞分辨率下研究感染器官中与发病机制相关的白色念珠菌基因的表达模式铺平了道路。用于在单细胞分辨率下可视化和定量转录物的工具已经能够在动物细胞和组织中解析基因表达的时空模式。然而,对于更小的微生物细胞,单细胞分辨率下的转录物的准确定量仍然具有挑战性。即使在克隆群体中,细胞之间转录物水平的随机变化等普遍现象似乎在许多微生物的生物学中也起着重要作用。研究这一过程需要对微生物细胞进行优化,以便以单分子分辨率对 mRNAs 进行成像和测量。在本报告中,我们适应并扩展了杂交链反应(HCR)与分裂引发探针相结合,以高分辨率可视化人类病原体白色念珠菌中的转录物。