文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类肺部单细胞 RNA 测序的分子细胞图谱。

A molecular cell atlas of the human lung from single-cell RNA sequencing.

机构信息

Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.

Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Nature. 2020 Nov;587(7835):619-625. doi: 10.1038/s41586-020-2922-4. Epub 2020 Nov 18.


DOI:10.1038/s41586-020-2922-4
PMID:33208946
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7704697/
Abstract

Although single-cell RNA sequencing studies have begun to provide compendia of cell expression profiles, it has been difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here, using droplet- and plate-based single-cell RNA sequencing of approximately 75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, we create an extensive cell atlas of the human lung. We define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 out of 45 previously known cell types and 14 previously unknown ones. This comprehensive molecular atlas identifies the biochemical functions of lung cells and the transcription factors and markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signalling interactions and immune cell homing; and identifies cell types that are directly affected by lung disease genes and respiratory viruses. By comparing human and mouse data, we identified 17 molecular cell types that have been gained or lost during lung evolution and others with substantially altered expression profiles, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions and interactions are achieved in development and tissue engineering and altered in disease and evolution.

摘要

尽管单细胞 RNA 测序研究已开始提供细胞表达谱摘要,但要系统地识别和定位单个器官中的所有分子细胞类型以创建完整的分子细胞图谱,仍然具有一定难度。在这里,我们通过对大约 75000 个人类肺组织隔室和循环血液细胞进行基于液滴和板的单细胞 RNA 测序,并结合多管齐下的细胞注释方法,创建了一个人类肺部的广泛细胞图谱。我们定义了人类肺部 58 种细胞群的基因表达特征和解剖位置,包括 45 种已知细胞类型中的 41 种和 14 种未知细胞类型。这个全面的分子图谱确定了肺细胞的生化功能,以及制造和监测它们的转录因子和标记物;定义了循环激素的细胞靶标,并预测了局部信号相互作用和免疫细胞归巢;还确定了受肺部疾病基因和呼吸道病毒直接影响的细胞类型。通过比较人类和小鼠的数据,我们确定了 17 种在肺部进化过程中获得或丢失的分子细胞类型,以及其他表达谱发生显著改变的细胞类型,揭示了细胞类型和细胞类型特异性基因表达在器官进化过程中的广泛可塑性,包括细胞类型之间的表达转换。这个图谱为研究肺细胞的身份、功能和相互作用在发育和组织工程中是如何实现的,以及在疾病和进化中是如何改变的提供了分子基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/cd728056e997/nihms-1624031-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/3fd345d4fe4e/nihms-1624031-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/176623d6875d/nihms-1624031-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/9f04f9cbc5c9/nihms-1624031-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/82be85eded8b/nihms-1624031-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/ca1ec44a0786/nihms-1624031-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/a7999d6336c4/nihms-1624031-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/8079ffb50dd5/nihms-1624031-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/cf3980c9277f/nihms-1624031-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/30c016cf54bd/nihms-1624031-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/713c1a43cfc6/nihms-1624031-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/c3cefeac98f0/nihms-1624031-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/2d63c566ebfe/nihms-1624031-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/7e7aa7db660b/nihms-1624031-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/5fc5223b5e4b/nihms-1624031-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/28465b601692/nihms-1624031-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/cd728056e997/nihms-1624031-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/3fd345d4fe4e/nihms-1624031-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/176623d6875d/nihms-1624031-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/9f04f9cbc5c9/nihms-1624031-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/82be85eded8b/nihms-1624031-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/ca1ec44a0786/nihms-1624031-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/a7999d6336c4/nihms-1624031-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/8079ffb50dd5/nihms-1624031-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/cf3980c9277f/nihms-1624031-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/30c016cf54bd/nihms-1624031-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/713c1a43cfc6/nihms-1624031-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/c3cefeac98f0/nihms-1624031-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/2d63c566ebfe/nihms-1624031-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/7e7aa7db660b/nihms-1624031-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/5fc5223b5e4b/nihms-1624031-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/28465b601692/nihms-1624031-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/619c/7704697/cd728056e997/nihms-1624031-f0004.jpg

相似文献

[1]
A molecular cell atlas of the human lung from single-cell RNA sequencing.

Nature. 2020-11

[2]
A single-cell RNA sequencing atlas of the healthy canine lung: a foundation for comparative studies.

Front Immunol. 2025-3-6

[3]
Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung.

Circulation. 2021-7-27

[4]
Cell type transcriptome atlas for the planarian .

Science. 2018-4-19

[5]
Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq.

Nature. 2014-4-13

[6]
Single-cell RNA sequencing of mouse lower respiratory tract epithelial cells: A meta-analysis.

Cells Dev. 2023-6

[7]
Anatomical structures, cell types and biomarkers of the Human Reference Atlas.

Nat Cell Biol. 2021-11

[8]
Single-cell transcriptomic analysis identifies extensive heterogeneity in the cellular composition of mouse Achilles tendons.

Am J Physiol Cell Physiol. 2020-9-2

[9]
The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans.

Science. 2022-5-13

[10]
Single-cell transcriptome analysis of endometrial tissue.

Hum Reprod. 2016-4

引用本文的文献

[1]
Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther. 2025-9-10

[2]
Engineering the Future of Stem Cells in Vascular Reconstruction: A Leap Towards Functional Endothelialized Tissue-Engineered Vascular Conduits.

Stem Cell Rev Rep. 2025-9-4

[3]
Progress in the Application of Single-Cell Sequencing in Neoadjuvant Therapy for Esophageal Cancer.

Cureus. 2025-7-31

[4]
Histamine as a mediator of cross-talk between human lung mast cells and macrophages.

Sci Rep. 2025-8-30

[5]
TSLP: contrasting roles in cancer.

Front Immunol. 2025-8-12

[6]
The Role of Mesenchymal Stromal Cells in the Treatment of Bronchopulmonary Dysplasia: A Multi-Prong Approach for a Heterogeneous Disease.

Compr Physiol. 2025-8

[7]
HiCat: a semi-supervised approach for cell type annotation.

Brief Bioinform. 2025-7-2

[8]
Mechanistic Insights and Therapeutic Potential of Wnt5a Signaling in Alveolar Epithelial Cell Development and Bronchopulmonary Dysplasia.

Stem Cell Rev Rep. 2025-8-16

[9]
Immune disease dialogue of chemokine-based cell communications as revealed by single-cell RNA sequencing meta-analysis.

Front Syst Biol. 2024-12-12

[10]
Mechanistic insights into promotion of non-small cell lung cancer by BAG5 using integrative multi-omics approaches.

Front Immunol. 2025-7-25

本文引用的文献

[1]
A single-cell transcriptomic atlas characterizes ageing tissues in the mouse.

Nature. 2020-7-15

[2]
Construction of a human cell landscape at single-cell level.

Nature. 2020-3-25

[3]
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.

Lancet. 2020-1-24

[4]
A human liver cell atlas reveals heterogeneity and epithelial progenitors.

Nature. 2019-7-10

[5]
A cellular census of human lungs identifies novel cell states in health and in asthma.

Nat Med. 2019-6-17

[6]
Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH.

Nature. 2019-3-25

[7]
Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis.

Am J Respir Crit Care Med. 2019-6-15

[8]
The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019.

Nucleic Acids Res. 2019-1-8

[9]
Single-cell reconstruction of the early maternal-fetal interface in humans.

Nature. 2018-11-14

[10]
Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris.

Nature. 2018-10-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索