Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas, San Carlos de Bariloche, Río Negro, Argentina.
Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina.
J Neurophysiol. 2021 Aug 1;126(2):561-574. doi: 10.1152/jn.00147.2021. Epub 2021 Jul 7.
Membrane potential oscillations of thalamocortical (TC) neurons are believed to be involved in the generation and maintenance of brain rhythms that underlie global physiological and pathological brain states. These membrane potential oscillations depend on the synaptic interactions of TC neurons and their intrinsic electrical properties. These oscillations may be also shaped by increased output responses at a preferred frequency, known as intrinsic neuronal resonance. Here, we combine electrophysiological recordings in mouse brain slices, modern pharmacological tools, dynamic clamp, and computational modeling to study the ionic mechanisms that generate and modulate TC neuron resonance. We confirm findings of pioneering studies showing that most TC neurons display resonance that results from the interaction of the slow inactivation of the low-threshold calcium current with the passive properties of the membrane. We also show that the hyperpolarization-activated cationic current is not involved in the generation of resonance; instead it plays a minor role in the stabilization of TC neuron impedance magnitude due to its large contribution to the steady conductance. More importantly, we also demonstrate that TC neuron resonance is amplified by the inward rectifier potassium current by a mechanism that hinges on its strong voltage-dependent inward rectification (i.e., a negative slope conductance region). Accumulating evidence indicate that the ion channels that control the oscillatory behavior of TC neurons participate in pathophysiological processes. Results presented here points to as a new potential target for therapeutic intervention. Our study expands the repertoire of ionic mechanisms known to be involved in the generation and control of resonance and provides the first experimental proof of previous theoretical predictions on resonance amplification mediated by regenerative hyperpolarizing currents. In thalamocortical neurons, we confirmed that the calcium current generates resonance, determined that the large steady conductance of the cationic current curtails resonance, and demonstrated that the inward rectifier potassium current amplifies resonance.
丘脑皮层 (TC) 神经元的膜电位振荡被认为参与了大脑节律的产生和维持,这些节律是全局生理和病理大脑状态的基础。这些膜电位振荡依赖于 TC 神经元的突触相互作用及其内在的电特性。这些振荡也可能受到在优选频率下增加的输出响应的影响,这种响应被称为内在神经元共振。在这里,我们结合了在小鼠脑片上的电生理记录、现代药理学工具、动态钳位和计算模型,来研究产生和调节 TC 神经元共振的离子机制。我们证实了先驱性研究的发现,即大多数 TC 神经元显示出共振,这种共振是由低阈值钙电流的缓慢失活与膜的被动特性相互作用产生的。我们还表明,超极化激活的阳离子电流 不参与共振的产生;相反,由于其对稳态电导的巨大贡献,它在 TC 神经元阻抗幅度的稳定中起着次要作用。更重要的是,我们还证明 TC 神经元共振通过内向整流钾电流 被放大,这种放大机制依赖于其强电压依赖性内向整流(即负斜率电导区)。越来越多的证据表明,控制 TC 神经元振荡行为的离子通道参与了病理生理过程。这里呈现的结果表明 是治疗干预的一个新的潜在靶点。我们的研究扩展了已知参与共振产生和控制的离子机制的范围,并提供了关于由再生性超极化电流介导的共振放大的先前理论预测的第一个实验证据。在丘脑皮层神经元中,我们证实钙电流 产生了共振,确定了阳离子电流的大稳态电导 限制了共振,并且证明了内向整流钾电流 放大了共振。