Amarillo Yimy, Zagha Edward, Mato German, Rudy Bernardo, Nadal Marcela S
Consejo Nacional de Investigaciones Científicas y Técnicas, Física Estadística e Interdisciplinaria, Centro Atómico Bariloche, San Carlos de Bariloche, Rio Negro, Argentina; Smilow Neuroscience Program, New York University Medical Center, New York, New York; and
Smilow Neuroscience Program, New York University Medical Center, New York, New York; and.
J Neurophysiol. 2014 Jul 15;112(2):393-410. doi: 10.1152/jn.00647.2013. Epub 2014 Apr 23.
The signaling properties of thalamocortical (TC) neurons depend on the diversity of ion conductance mechanisms that underlie their rich membrane behavior at subthreshold potentials. Using patch-clamp recordings of TC neurons in brain slices from mice and a realistic conductance-based computational model, we characterized seven subthreshold ion currents of TC neurons and quantified their individual contributions to the total steady-state conductance at levels below tonic firing threshold. We then used the TC neuron model to show that the resting membrane potential results from the interplay of several inward and outward currents over a background provided by the potassium and sodium leak currents. The steady-state conductances of depolarizing Ih (hyperpolarization-activated cationic current), IT (low-threshold calcium current), and INaP (persistent sodium current) move the membrane potential away from the reversal potential of the leak conductances. This depolarization is counteracted in turn by the hyperpolarizing steady-state current of IA (fast transient A-type potassium current) and IKir (inwardly rectifying potassium current). Using the computational model, we have shown that single parameter variations compatible with physiological or pathological modulation promote burst firing periodicity. The balance between three amplifying variables (activation of IT, activation of INaP, and activation of IKir) and three recovering variables (inactivation of IT, activation of IA, and activation of Ih) determines the propensity, or lack thereof, of repetitive burst firing of TC neurons. We also have determined the specific roles that each of these variables have during the intrinsic oscillation.
丘脑皮质(TC)神经元的信号特性取决于离子电导机制的多样性,这些机制是其阈下电位丰富膜行为的基础。利用小鼠脑片上TC神经元的膜片钳记录以及基于电导的真实计算模型,我们对TC神经元的七种阈下离子电流进行了表征,并量化了它们在低于强直放电阈值水平时对总稳态电导的各自贡献。然后,我们使用TC神经元模型表明,静息膜电位是由几种内向和外向电流在钾离子和钠离子漏电流提供的背景下相互作用产生的。去极化的Ih(超极化激活阳离子电流)、IT(低阈值钙电流)和INaP(持续性钠电流)的稳态电导使膜电位远离漏电流的反转电位。这种去极化又被IA(快速瞬态A型钾电流)和IKir(内向整流钾电流)的超极化稳态电流所抵消。使用计算模型,我们表明与生理或病理调节兼容的单参数变化会促进爆发式放电的周期性。三个放大变量(IT的激活、INaP的激活和IKir的激活)和三个恢复变量(IT的失活、IA的激活和Ih的激活)之间的平衡决定了TC神经元重复爆发式放电的倾向或缺乏这种倾向。我们还确定了这些变量在内在振荡过程中各自的具体作用。