文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

施万细胞通过骨髓间充质干细胞来源的内皮细胞促进组织工程骨的血管生成和成骨。

Schwann cells promote prevascularization and osteogenesis of tissue-engineered bone via bone marrow mesenchymal stem cell-derived endothelial cells.

机构信息

Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.

Department of Hand and Foot Orthopaedics, Yantai Yuhuangding Hospital, Qingdao University Medical College, Yantai, Shandong, China.

出版信息

Stem Cell Res Ther. 2021 Jul 7;12(1):382. doi: 10.1186/s13287-021-02433-3.


DOI:10.1186/s13287-021-02433-3
PMID:34233721
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8261922/
Abstract

BACKGROUND: Tissue-engineered bone grafts (TEBGs) that undergo vascularization and neurotization evolve into functioning bone tissue. Previously, we verified that implanting sensory nerve tracts into TEBGs promoted osteogenesis. However, the precise mechanisms and interaction between seed cells were not explored. In this study, we hypothesized that neurotization may influence the osteogenesis of TEBGs through vascularization. METHODS: We cultured rat Schwann cells (SCs), aortic endothelial cells (AECs), and bone marrow-derived mesenchymal stem cells (BM-MSCs) and then obtained BM-MSC-derived induced endothelial cells (IECs) and induced osteoblasts (IOBs). IECs and AECs were cultured in an SC-conditioned medium (SC-CM) to assess proliferation, migration, capillary-like tube formation, and angiogenesis, and the vascular endothelial growth factor (VEGF) levels in the supernatants were detected. We established an indirect coculture model to detect the expression of nestin and VEGF receptors in IECs and tissue inhibitor of metalloproteinase (TIMP)-2 in SCs. Then, SCs, IECs, and IOBs were labeled and loaded into a β-tricalcium phosphate scaffold to induce prevascularization, and the scaffold was implanted into a 6-mm-long defect of rat femurs. Three groups were set up according to the loaded cells: I, SCs, and IECs (coculture for 3 days) plus IOBs; II, IECs (culture for 3 days) plus IOBs; III, IOBs. Nestin and TIMP-2 expression and osteogenesis of TEBGs were evaluated at 12 weeks post-implantation through histological and radiological assessments. RESULTS: We found that SC-CM promoted IEC proliferation, migration, capillary-like tube formation, and angiogenesis, but no similar effects were observed for AECs. IECs expressed nestin extensively, while AECs barely expressed nestin, and SC-CM promoted the VEGF secretion of IECs. In the coculture model, SCs promoted nestin and VEGF receptor expression in IECs, and IECs inhibited TIMP-2 expression in SCs. The promotion of prevascularized TEBGs by SCs and IECs in group I augmented new bone formation at 6 and 12 weeks. Nestin expression was higher in group I than in the other groups, while TIMP-2 expression was lower at 12 weeks. CONCLUSIONS: This study demonstrated that SCs can promote TEBG osteogenesis via IECs and further revealed the related specific characteristics of IECs, providing preliminary cytological evidence for neurotization of TEBGs.

摘要

背景:经过血管化和神经化的组织工程化骨移植物(TEBG)演变成具有功能的骨组织。以前,我们已经验证了将感觉神经束植入 TEBG 中可以促进成骨。然而,种子细胞之间的确切机制和相互作用尚未得到探索。在这项研究中,我们假设神经化可能通过血管化影响 TEBG 的成骨作用。

方法:我们培养大鼠雪旺细胞(SCs)、主动脉内皮细胞(AECs)和骨髓间充质干细胞(BM-MSCs),然后获得 BM-MSC 衍生的诱导内皮细胞(IECs)和诱导成骨细胞(IOBs)。将 IECs 和 AECs 在雪旺细胞条件培养基(SC-CM)中培养,以评估增殖、迁移、毛细血管样管形成和血管生成,并检测上清液中的血管内皮生长因子(VEGF)水平。我们建立了间接共培养模型,以检测 IECs 中的巢蛋白和血管内皮生长因子受体的表达以及 SCs 中的组织金属蛋白酶抑制剂(TIMP)-2 的表达。然后,将 SCs、IECs 和 IOBs 标记并加载到 β-磷酸三钙支架中以诱导预血管化,并将支架植入大鼠股骨 6mm 长的缺损中。根据加载的细胞,我们设置了三组:I 组,SCs 和 IECs(共培养 3 天)加 IOBs;II 组,IECs(培养 3 天)加 IOBs;III 组,IOBs。通过组织学和影像学评估,在植入后 12 周评估 TEBG 的巢蛋白和 TIMP-2 表达和骨生成。

结果:我们发现 SC-CM 促进了 IEC 的增殖、迁移、毛细血管样管形成和血管生成,但 AEC 则没有类似的作用。IECs 广泛表达巢蛋白,而 AECs 几乎不表达巢蛋白,SC-CM 促进了 IECs 的 VEGF 分泌。在共培养模型中,SCs 促进了 IECs 中巢蛋白和血管内皮生长因子受体的表达,而 IECs 抑制了 SCs 中 TIMP-2 的表达。第 I 组中 SCs 和 IECs 对预血管化 TEBG 的促进作用增强了第 6 周和第 12 周的新骨形成。第 I 组的巢蛋白表达高于其他组,而第 12 周的 TIMP-2 表达较低。

结论:本研究表明,SCs 可以通过 IEC 促进 TEBG 的成骨作用,进一步揭示了 IEC 的相关特征,为 TEBG 的神经化提供了初步的细胞学证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/a745cd05cdb8/13287_2021_2433_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/4292ea99e245/13287_2021_2433_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/bb0bcf6796d9/13287_2021_2433_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/690d57c278dc/13287_2021_2433_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/87449c04ffb2/13287_2021_2433_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/d34d8ec4e161/13287_2021_2433_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/f8a4a1cceda0/13287_2021_2433_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/a745cd05cdb8/13287_2021_2433_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/4292ea99e245/13287_2021_2433_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/bb0bcf6796d9/13287_2021_2433_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/690d57c278dc/13287_2021_2433_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/87449c04ffb2/13287_2021_2433_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/d34d8ec4e161/13287_2021_2433_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/f8a4a1cceda0/13287_2021_2433_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a833/8261922/a745cd05cdb8/13287_2021_2433_Fig7_HTML.jpg

相似文献

[1]
Schwann cells promote prevascularization and osteogenesis of tissue-engineered bone via bone marrow mesenchymal stem cell-derived endothelial cells.

Stem Cell Res Ther. 2021-7-7

[2]
Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells.

Biomaterials. 2010-9-24

[3]
Induced endothelial cells enhance osteogenesis and vascularization of mesenchymal stem cells.

Cells Tissues Organs. 2009

[4]
Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.

Stem Cell Res Ther. 2017-6-5

[5]
[Effects of Schwann cells promoting nitric oxide secretion of bone marrow mesenchymal stem cells derived endothelial cells].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014-8

[6]
Prevascularization promotes endogenous cell-mediated angiogenesis by upregulating the expression of fibrinogen and connective tissue growth factor in tissue-engineered bone grafts.

Stem Cell Res Ther. 2018-7-4

[7]
Vascularization converts the lineage fate of bone mesenchymal stem cells to endothelial cells in tissue-engineered bone grafts by modulating FGF2-RhoA/ROCK signaling.

Cell Death Dis. 2018-9-20

[8]
Hypoxia alleviates dexamethasone-induced inhibition of angiogenesis in cocultures of HUVECs and rBMSCs via HIF-1α.

Stem Cell Res Ther. 2020-8-6

[9]
[Establishment and biological effect evaluation of prevascularized porous β-tricalcium phosphate tissue engineered bone].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022-5-15

[10]
[Study on bone marrow mesenchymal stem cells derived osteoblasts and endothelial cells compound with chitosan/hydroxyapatite scaffold to construct vascularized tissue engineered bone].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2012-4

引用本文的文献

[1]
Topography-based implants for bone regeneration: Design, biological mechanism, and therapeutics.

Mater Today Bio. 2025-7-13

[2]
Neuropeptide TIP39 induces autophagy in PTH2 receptor-positive myeloid neoplasms.

Int J Hematol. 2025-4-27

[3]
Schwann cells in regeneration and cancer.

Front Pharmacol. 2025-1-29

[4]
Impact of Different Cell Types on the Osteogenic Differentiation Process of Mesenchymal Stem Cells.

Stem Cells Int. 2025-2-13

[5]
Sources and applications of endothelial seed cells: a review.

Stem Cell Res Ther. 2024-6-18

[6]
Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges.

Bone Res. 2023-12-20

[7]
Role of the Peripheral Nervous System in Skeletal Development and Regeneration: Controversies and Clinical Implications.

Curr Osteoporos Rep. 2023-10

[8]
Bioprinted constructs that simulate nerve-bone crosstalk to improve microenvironment for bone repair.

Bioact Mater. 2023-4-21

[9]
The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies.

Bone Res. 2023-3-14

[10]
Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering.

Materials (Basel). 2022-11-28

本文引用的文献

[1]
Characterization of a prevascularized biomimetic tissue engineered scaffold for bone regeneration.

J Biomed Mater Res B Appl Biomater. 2020-5

[2]
Calcium phosphate cement scaffold with stem cell co-culture and prevascularization for dental and craniofacial bone tissue engineering.

Dent Mater. 2019-5-7

[3]
Tissue engineering for the repair of peripheral nerve injury.

Neural Regen Res. 2019-1

[4]
Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis.

Rom J Morphol Embryol. 2018

[5]
Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration.

Mater Today (Kidlington). 2018-5

[6]
Prevascularization promotes endogenous cell-mediated angiogenesis by upregulating the expression of fibrinogen and connective tissue growth factor in tissue-engineered bone grafts.

Stem Cell Res Ther. 2018-7-4

[7]
Crosstalk between neuropeptides SP and CGRP in regulation of BMP2-induced bone differentiation.

Connect Tissue Res. 2018-12

[8]
Impact of the Autonomic Nervous System on the Skeleton.

Physiol Rev. 2018-7-1

[9]
Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology.

Stem Cell Res Ther. 2018-4-20

[10]
Effect of Brain-Derived Neurotrophic Factor on the Neurogenesis and Osteogenesis in Bone Engineering.

Tissue Eng Part A. 2018-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索