Suppr超能文献

致敏致死:FOXO3 基因敲除纯合子小鼠噪声性听力损失和耳蜗损伤相关遗传机制的研究。

Primed to die: an investigation of the genetic mechanisms underlying noise-induced hearing loss and cochlear damage in homozygous Foxo3-knockout mice.

机构信息

Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.

The Jackson Laboratory, Bar Harbor, ME, USA.

出版信息

Cell Death Dis. 2021 Jul 7;12(7):682. doi: 10.1038/s41419-021-03972-6.

Abstract

The prevalence of noise-induced hearing loss (NIHL) continues to increase, with limited therapies available for individuals with cochlear damage. We have previously established that the transcription factor FOXO3 is necessary to preserve outer hair cells (OHCs) and hearing thresholds up to two weeks following mild noise exposure in mice. The mechanisms by which FOXO3 preserves cochlear cells and function are unknown. In this study, we analyzed the immediate effects of mild noise exposure on wild-type, Foxo3 heterozygous (Foxo3), and Foxo3 knock-out (Foxo3) mice to better understand FOXO3's role(s) in the mammalian cochlea. We used confocal and multiphoton microscopy to examine well-characterized components of noise-induced damage including calcium regulators, oxidative stress, necrosis, and caspase-dependent and caspase-independent apoptosis. Lower immunoreactivity of the calcium buffer Oncomodulin in Foxo3 OHCs correlated with cell loss beginning 4 h post-noise exposure. Using immunohistochemistry, we identified parthanatos as the cell death pathway for OHCs. Oxidative stress response pathways were not significantly altered in FOXO3's absence. We used RNA sequencing to identify and RT-qPCR to confirm differentially expressed genes. We further investigated a gene downregulated in the unexposed Foxo3 mice that may contribute to OHC noise susceptibility. Glycerophosphodiester phosphodiesterase domain containing 3 (GDPD3), a possible endogenous source of lysophosphatidic acid (LPA), has not previously been described in the cochlea. As LPA reduces OHC loss after severe noise exposure, we treated noise-exposed Foxo3 mice with exogenous LPA. LPA treatment delayed immediate damage to OHCs but was insufficient to ultimately prevent their death or prevent hearing loss. These results suggest that FOXO3 acts prior to acoustic insult to maintain cochlear resilience, possibly through sustaining endogenous LPA levels.

摘要

噪声性听力损失(NIHL)的患病率持续上升,而对于耳蜗损伤的个体,可用的治疗方法有限。我们之前已经确定,转录因子 FOXO3 对于在小鼠中轻度噪声暴露后两周内维持外毛细胞(OHCs)和听力阈值是必需的。FOXO3 保护耳蜗细胞和功能的机制尚不清楚。在这项研究中,我们分析了轻度噪声暴露对野生型、Foxo3 杂合子(Foxo3)和 Foxo3 敲除(Foxo3)小鼠的即刻影响,以更好地了解 FOXO3 在哺乳动物耳蜗中的作用。我们使用共聚焦和多光子显微镜检查了噪声诱导损伤的特征性成分,包括钙调节剂、氧化应激、坏死以及 caspase 依赖性和非依赖性细胞凋亡。Foxo3 OHC 中的钙缓冲剂 Oncomodulin 免疫反应性降低与噪声暴露后 4 小时开始的细胞丢失有关。通过免疫组织化学,我们确定了 Parthanatos 是 OHC 细胞死亡的途径。在缺乏 FOXO3 的情况下,氧化应激反应途径没有明显改变。我们使用 RNA 测序来鉴定和 RT-qPCR 来确认差异表达的基因。我们进一步研究了在未暴露的 Foxo3 小鼠中下调的基因,该基因可能导致 OHC 对噪声的敏感性。甘油磷酸二酯磷酸二酯酶结构域包含 3(GDPD3),是一种可能的内源性溶血磷脂酸(LPA)来源,以前在耳蜗中尚未描述过。由于 LPA 可减少严重噪声暴露后的 OHC 损失,因此我们用外源性 LPA 处理暴露于噪声的 Foxo3 小鼠。LPA 处理延迟了 OHC 的即刻损伤,但不足以最终防止它们的死亡或防止听力损失。这些结果表明,FOXO3 在声学损伤之前起作用以维持耳蜗的弹性,可能是通过维持内源性 LPA 水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5408/8263610/d92efda4ff5a/41419_2021_3972_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验