Bhat Aadil Ahmad, Zaman M Burhanuz, Malik Javied Hamid, Malik Khurshaid Ahmad, Assadullah Insaaf, Tomar Radha
School of Studies in Chemistry, Jiwaji University, Gwalior 474011, India.
School of Studies in Physics, Jiwaji University, Gwalior 474011, India.
ACS Omega. 2021 Jun 16;6(25):16356-16363. doi: 10.1021/acsomega.1c00831. eCollection 2021 Jun 29.
Mn doping in SrSnO perovskite material via hydrothermal process under subcritical conditions is reported for the very first time. The present article aims to carry this perovskite suitable for blue light-emitting diodes (LEDs) and spintronic applications. The influence of various Mn doping percentages on structural, morphological, compositional, optical, photoluminescent, and magnetic properties of SrSnO is demonstrated. The perovskite material is grown in an orthorhombic crystal structure having a space symmetry of along with point group of as determined from the Rietveld refinement. Doping is an excellent way to modify the properties of wide-band-gap perovskite nanostructures. Incorporation of Mn is the result of exact substitution. Morphological studies indicate formation of rodlike structures with thickness in nanoscale dimensions (180-280 nm), and the thickness is a function of doping concentration. The higher doping concentration resulted in enhanced growth of the nanorods. Selected area electron diffraction (SAED) results showed the single-crystal nature of the nanorods. Thermogravimetric analysis (TGA) confirmed the high stability of the material at elevated temperatures. Also, the doped perovskite material is transparent in the visible light, active in the ultraviolet region having a band gap of ∼2.78 eV, and is tuned up to 2.25 eV as the Mn doping concentration reaches 10%. The transfer of excitonic energy from the host material to the dopant Mn ion leads to the formation of spin-forbidden [T-A] emission. Later on, photoluminescence study indicates an enhancement in luminescence behavior of Mn doped perovskite nanostructures. The Commission Internationale de l'éclairage (CIE) diagram drawn to find the color coordinates of the nanorods determines their suitability for blue LEDs. In addition, Mn doping results the conversion of diamagnetic SrSnO into a ferromagnetic material, making the nanorods suitable for spintronic applications.
首次报道了在亚临界条件下通过水热法在SrSnO钙钛矿材料中掺杂锰。本文旨在使这种钙钛矿适用于蓝光发光二极管(LED)和自旋电子学应用。展示了不同锰掺杂百分比对SrSnO的结构、形态、成分、光学、光致发光和磁性的影响。通过Rietveld精修确定,钙钛矿材料生长为正交晶体结构,空间对称性为 ,点群为 。掺杂是改变宽带隙钙钛矿纳米结构性质的一种极好方法。锰的掺入是精确取代的结果。形态学研究表明形成了厚度在纳米尺度(180 - 280 nm)的棒状结构,且厚度是掺杂浓度的函数。较高的掺杂浓度导致纳米棒生长增强。选区电子衍射(SAED)结果表明纳米棒具有单晶性质。热重分析(TGA)证实了该材料在高温下具有高稳定性。此外,掺杂的钙钛矿材料在可见光下是透明的,在紫外区域有活性,带隙约为2.78 eV,当锰掺杂浓度达到10%时,带隙调至2.25 eV。激子能量从主体材料转移到掺杂的锰离子导致形成自旋禁戒的[T - A]发射。随后,光致发光研究表明锰掺杂钙钛矿纳米结构的发光行为增强。绘制的国际照明委员会(CIE)图以确定纳米棒的颜色坐标,确定了它们适用于蓝光LED。此外,锰掺杂使抗磁性的SrSnO转变为铁磁材料,使纳米棒适用于自旋电子学应用。