Department of Pediatrics, Case Western University, Cleveland, Ohio.
Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
J Appl Physiol (1985). 2021 Aug 1;131(2):821-835. doi: 10.1152/japplphysiol.01031.2020. Epub 2021 Jul 8.
Arterial pCO elevations increase minute ventilation via activation of chemosensors within the carotid body (CB) and brainstem. Although the roles of CB chemoafferents in the hypercapnic (HC) ventilatory response have been investigated, there are no studies reporting the role of these chemoafferents in the ventilatory responses to a HC challenge or the responses that occur upon return to room air, in freely moving mice. This study found that an HC challenge (5% CO, 21% O, 74% N for 15 min) elicited an array of responses, including increases in frequency of breathing (accompanied by decreases in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives in sham-operated (SHAM) adult male C57BL6 mice, and that return to room air elicited a brief excitatory phase followed by gradual recovery of all parameters toward baseline values over a 15-min period. The array of ventilatory responses to the HC challenge in mice with bilateral carotid sinus nerve transection (CSNX) performed 7 days previously occurred more slowly but reached similar maxima as SHAM mice. A major finding was responses upon return to room air were dramatically lower in CSNX mice than SHAM mice, and the parameters returned to baseline values within 1-2 min in CSNX mice, whereas it took much longer in SHAM mice. These findings are the first evidence that CB chemoafferents play a key role in initiating the ventilatory responses to HC challenge in C57BL6 mice and are essential for the expression of post-HC ventilatory responses. This study presents the first evidence that carotid body chemoafferents play a key role in initiating the ventilatory responses, such as increases in frequency of breathing, tidal volume, and minute ventilation that occur in response to a hypercapnic gas challenge in freely moving C57BL6 mice. Our study also demonstrates for the first time that these chemoafferents are essential for the expression of the ventilatory responses that occur upon return to room air in these mice.
动脉 pCO2 升高通过激活颈动脉体 (CB) 和脑干中的化学感受器来增加分钟通气量。尽管已经研究了 CB 化学感受器在高碳酸血症 (HC) 通气反应中的作用,但尚无研究报告这些化学感受器在 HC 挑战时的通气反应或在返回室内空气时的反应中的作用,在自由活动的小鼠中。本研究发现,HC 挑战(5% CO、21% O、74% N 持续 15 分钟)引起了一系列反应,包括呼吸频率增加(伴随着吸气和呼气时间减少),潮气量、分钟通气量、吸气和呼气峰值流量以及吸气和呼气驱动增加,在假手术(SHAM)成年雄性 C57BL6 小鼠中,而返回室内空气引起短暂的兴奋期,随后所有参数逐渐恢复到基线值,在 15 分钟内。双侧颈动脉窦神经切断术(CSNX) 7 天前进行的小鼠对 HC 挑战的一系列通气反应发生得更慢,但达到与 SHAM 小鼠相似的最大值。一个主要发现是,CSNX 小鼠返回室内空气后的反应明显低于 SHAM 小鼠,并且 CSNX 小鼠中的参数在 1-2 分钟内返回基线值,而 SHAM 小鼠则需要更长的时间。这些发现首次证明 CB 化学感受器在 C57BL6 小鼠对 HC 挑战的通气反应中起着关键作用,并且对于 HC 后通气反应的表达是必不可少的。本研究首次证明,颈动脉体化学感受器在启动通气反应中起着关键作用,例如呼吸频率、潮气量和分钟通气量的增加,这些反应是对自由活动的 C57BL6 小鼠中高碳酸血症气体挑战的反应。我们的研究还首次证明,这些化学感受器对于这些小鼠在返回室内空气时发生的通气反应的表达是必不可少的。