Grupo QTC, Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
Millennium Nucleus on Catalytic Processes Towards Sustainable Chemistry, 4070386, Santiago, Chile.
J Comput Aided Mol Des. 2021 Sep;35(9):943-952. doi: 10.1007/s10822-021-00408-3. Epub 2021 Jul 8.
Klebsiella pneumoniae carbapenemase (KPC-2) is the most commonly encountered class A β-lactamase variant worldwide, which confer high-level resistance to most available antibiotics. In this article we address the issue by a combined approach involving molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations. The study contributes to improve the understanding, at molecular level, of the acylation and deacylation stages of avibactam involved in the inhibition of KPC-2. The results show that both mechanisms, acylation and deacylation, the reaction occur via the formation of a tetrahedral intermediate. The formation of this intermediate corresponds to the rate limiting stage. The activation barriers are 19.5 kcal/mol and 23.0 kcal/mol for the acylation and deacylation stages, respectively. The associated rate constants calculated, using the Eyring equation, are 1.2 × 10 and 3.9 × 10 (s). These values allow estimating a value of 3.3 × 10 for the inhibition constant, in good agreement with the experimental value.
肺炎克雷伯菌碳青霉烯酶(KPC-2)是目前全球最常见的 A 类β-内酰胺酶变异体,对大多数现有抗生素具有高度耐药性。本文通过分子动力学模拟和混合量子力学/分子力学计算的综合方法解决了这一问题。该研究有助于提高对涉及抑制 KPC-2 的阿维巴坦酰化和脱酰化阶段的分子水平的理解。结果表明,酰化和脱酰化这两种机制均通过形成四面体中间体发生。形成这种中间体对应于限速阶段。酰化和脱酰化阶段的活化能垒分别为 19.5 kcal/mol 和 23.0 kcal/mol。使用 Eyring 方程计算的相关速率常数分别为 1.2×10 和 3.9×10(s)。这些值允许估计抑制常数为 3.3×10,与实验值吻合良好。