Kong Xiangrui, Lovrić Josip, Johansson Sofia M, Prisle Nønne L, Pettersson Jan B C
Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, Gothenburg SE-41296, Sweden.
Center for Atmospheric Research, University of Oulu, Oulu FI-90014, Finland.
J Phys Chem A. 2021 Jul 22;125(28):6263-6272. doi: 10.1021/acs.jpca.1c02309. Epub 2021 Jul 8.
Organic-organic interactions play important roles in secondary organic aerosol formation, but the interactions are complex and poorly understood. Here, we use environmental molecular beam experiments combined with molecular dynamics simulations to investigate the interactions between methanol and nopinone, as atmospheric organic proxies. In the experiments, methanol monomers and clusters are sent to collide with three types of surfaces, i.e., graphite, thin nopinone coating on graphite, and nopinone multilayer surfaces, at temperatures between 140 and 230 K. Methanol monomers are efficiently scattered from the graphite surface, whereas the scattering is substantially suppressed from nopinone surfaces. The thermal desorption from the three surfaces is similar, suggesting that all the surfaces have weak or similar influences on methanol desorption. All trapped methanol molecules completely desorb within a short experimental time scale at temperatures of 180 K and above. At lower temperatures, the desorption rate decreases, and a long experimental time scale is used to resolve the desorption, where three desorption components are identified. The fast component is beyond the experimental detection limit. The intermediate component exhibits multistep desorption character and has an activation energy of = 0.18 ± 0.03 eV, in good agreement with simulation results. The slow desorption component is related to diffusion processes due to the weak temperature dependence. The molecular dynamics results show that upon collisions the methanol clusters shatter, and the shattered fragments quickly diffuse and recombine to clusters. Desorption involves a series of processes, including detaching from clusters and desorbing as monomers. At lower temperatures, methanol forms compact cluster structures while at higher temperatures, the methanol molecules form layered structures on the nopinone surface, which are visible in the simulation. Also, the simulation is used to study the liquid-liquid interaction, where the methanol clusters completely dissolve in liquid nopinone, showing ideal organic-organic mixing.
有机 - 有机相互作用在二次有机气溶胶形成过程中起着重要作用,但这种相互作用复杂且了解甚少。在此,我们采用环境分子束实验结合分子动力学模拟,来研究作为大气有机替代物的甲醇与诺蒎酮之间的相互作用。在实验中,将甲醇单体和团簇送至与三种类型的表面发生碰撞,即石墨、石墨上的薄诺蒎酮涂层以及诺蒎酮多层表面,温度范围在140至230K之间。甲醇单体从石墨表面有效散射,而从诺蒎酮表面的散射则大幅受到抑制。从这三种表面的热脱附情况相似,这表明所有表面对甲醇脱附的影响较弱或相似。在180K及以上温度时,所有捕获的甲醇分子在较短的实验时间尺度内完全脱附。在较低温度下,脱附速率降低,需用较长的实验时间尺度来解析脱附过程,在此过程中识别出三种脱附成分。快速成分超出了实验检测限。中间成分呈现多步脱附特征,其活化能为 = 0.18 ± 0.03 eV,与模拟结果吻合良好。缓慢脱附成分与扩散过程有关,因为其对温度的依赖性较弱。分子动力学结果表明,碰撞时甲醇团簇破碎,破碎的碎片迅速扩散并重新组合成团簇。脱附涉及一系列过程,包括从团簇中分离并以单体形式脱附。在较低温度下,甲醇形成紧密的团簇结构,而在较高温度下,甲醇分子在诺蒎酮表面形成层状结构,这在模拟中是可见的。此外,模拟还用于研究液 - 液相互作用,其中甲醇团簇完全溶解于液态诺蒎酮中,呈现出理想的有机 - 有机混合。