Suppr超能文献

基于共识的分布式传感器网络多目标跟踪的标记多伯努利滤波器。

Consensus-Based Labeled Multi-Bernoulli Filter for Multitarget Tracking in Distributed Sensor Network.

出版信息

IEEE Trans Cybern. 2022 Dec;52(12):12722-12733. doi: 10.1109/TCYB.2021.3087521. Epub 2022 Nov 18.

Abstract

This article introduces a novel consensus-based labeled multi-Bernoulli (LMB) filter to tackle multitarget tracking (MTT) in a distributed sensor network (DSN), whose sensor nodes have limited and different fields of view (FoVs). Although consensus-based algorithms are effective for distributed fusion and MTT, it may be problematic when distributed sensor nodes have different FoVs. To deal with this issue, the proposed method constructs an extended label space mapping to overcome the "label space mismatching" phenomenon; after that, the model of the undetected multitargets is established so that the tracks can be initialized outside the FoV of local sensors; finally and most important, weight selection and evolution mechanism are proposed such that the fusion weights are automatically tuned for each track at each time step and consensus step. The efficiency and robustness of the proposed algorithm are demonstrated in a distributed MTT scenario via numerical simulations.

摘要

本文提出了一种新的基于一致性的标记多伯努利(LMB)滤波器,用于解决分布式传感器网络(DSN)中的多目标跟踪(MTT)问题,其中传感器节点的视场(FoV)有限且不同。虽然基于一致性的算法对于分布式融合和 MTT 非常有效,但当分布式传感器节点具有不同的 FoV 时,可能会出现问题。为了解决这个问题,所提出的方法构建了一个扩展的标签空间映射来克服“标签空间不匹配”现象;之后,建立了未检测到的多目标模型,以便可以在局部传感器的 FoV 之外初始化轨迹;最后也是最重要的,提出了权重选择和演化机制,使得融合权重可以在每个时间步和每个一致性步自动为每个轨迹进行调整。通过数值模拟,在分布式 MTT 场景中验证了所提出算法的效率和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验