Suppr超能文献

利用上下文训练时域回声定位点击探测器。

Using context to train time-domain echolocation click detectors.

机构信息

Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-7720, USA.

Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0205, La Jolla, California 92093, USA.

出版信息

J Acoust Soc Am. 2021 May;149(5):3301. doi: 10.1121/10.0004992.

Abstract

This work demonstrates the effectiveness of using humans in the loop processes for constructing large training sets for machine learning tasks. A corpus of over 57 000 toothed whale echolocation clicks was developed by using a permissive energy-based echolocation detector followed by a machine-assisted quality control process that exploits contextual cues. Subsets of these data were used to train feed forward neural networks that detected over 850 000 echolocation clicks that were validated using the same quality control process. It is shown that this network architecture performs well in a variety of contexts and is evaluated against a withheld data set that was collected nearly five years apart from the development data at a location over 600 km distant. The system was capable of finding echolocation bouts that were missed by human analysts, and the patterns of error in the classifier consist primarily of anthropogenic sources that were not included as counter-training examples. In the absence of such events, typical false positive rates are under ten events per hour even at low thresholds.

摘要

这项工作证明了在构建机器学习任务的大型训练集时使用人机交互过程的有效性。通过使用允许基于能量的回声定位探测器,然后利用上下文线索进行机器辅助的质量控制过程,开发了超过 57000 个齿鲸回声定位点击的语料库。使用这些数据的子集来训练前馈神经网络,该网络检测到超过 850000 个回声定位点击,这些点击使用相同的质量控制过程进行验证。结果表明,这种网络架构在各种情况下表现良好,并针对在远离开发数据 600 多公里的位置收集的、与开发数据相隔近五年的保留数据集进行了评估。该系统能够找到被人类分析员错过的回声定位爆发,分类器中的错误模式主要来自未被包括在反训练示例中的人为来源。在没有此类事件的情况下,即使在低阈值下,典型的假阳性率也低于每小时十次。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验