Suppr超能文献

用于检测齿鲸类回声定位点击的卷积神经网络。

Convolutional neural network for detecting odontocete echolocation clicks.

机构信息

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Science, Xiamen University, Xiamen,

出版信息

J Acoust Soc Am. 2019 Jan;145(1):EL7. doi: 10.1121/1.5085647.

Abstract

In this work, a convolutional neural network based method is proposed to automatically detect odontocetes echolocation clicks by analyzing acoustic data recordings from a passive acoustic monitoring system. The neural network was trained to distinguish between click and non-click clips and was subsequently converted to a full-convolutional network. The performance of the proposed network was evaluated using synthetic data and real audio recordings. The experimental results indicate that the proposed method works stably with echolocation clicks of different species.

摘要

在这项工作中,提出了一种基于卷积神经网络的方法,通过分析被动声学监测系统的声学数据记录来自动检测齿鲸的回声定位点击。该神经网络经过训练,能够区分点击和非点击片段,随后被转换为全卷积网络。使用合成数据和真实音频记录评估了所提出的网络的性能。实验结果表明,该方法可以稳定地处理不同物种的回声定位点击。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验