Suppr超能文献

两耳间去相干对频率上两耳间强度差敏感性的影响。

Effects of interaural decoherence on sensitivity to interaural level differences across frequency.

机构信息

Department of Speech and Hearing Sciences, University of Washington, 1417 Northeast 42nd Street, Seattle, Washington 98105, USA.

Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.

出版信息

J Acoust Soc Am. 2021 Jun;149(6):4630. doi: 10.1121/10.0005123.

Abstract

The interaural level difference (ILD) is a robust indicator of sound source azimuth, and human ILD sensitivity persists under conditions that degrade normally-dominant interaural time difference (ITD) cues. Nonetheless, ILD sensitivity varies somewhat with both stimulus frequency and interaural correlation (coherence). To further investigate the combined binaural perceptual influence of these variables, the present study assessed ILD sensitivity at frequencies 250-4000 Hz using stimuli of varied interaural correlation. In the first of two experiments, ILD discrimination thresholds were modestly elevated, and subjective lateralization slightly reduced, for both half-correlated and uncorrelated narrowband noise tokens relative to correlated tokens. Different from thresholds in the correlated condition, which were worst at 1000 Hz [Grantham, D.W. (1984). J. Acoust. Soc. Am. 75, 1191-1194], thresholds in the decorrelated conditions were independent of frequency. However, intrinsic envelope fluctuations in narrowband stimuli caused moment-to-moment variation of the nominal ILD, complicating interpretation of measured thresholds. Thus, a second experiment employed low-fluctuation noise tokens, revealing a clear effect of interaural decoherence per se that was strongly frequency-dependent, decreasing in magnitude from low to high frequencies. Measurements are consistent with known integration times in ILD-sensitive neurons and also suggest persistent influences of covert ITD cues in putative "ILD" tasks.

摘要

两耳间强度差(ILD)是声源方位的一个强有力的指示符,即使在那些会降低主导的两耳时间差(ITD)线索的正常条件下,人类的 ILD 敏感性仍然存在。尽管如此,ILD 敏感性在刺激频率和两耳相关性(相干性)方面还是略有变化。为了进一步研究这些变量对双耳感知的综合影响,本研究使用具有不同两耳相关性的刺激,评估了 250-4000 Hz 频率下的 ILD 敏感性。在两个实验中的第一个实验中,与相关的窄带噪声令牌相比,半相关和不相关的窄带噪声令牌的 ILD 辨别阈值略有升高,主观侧化略有降低。与相关条件下的阈值不同,相关条件下的阈值在 1000 Hz 时最差[Grantham, D.W. (1984). J. Acoust. Soc. Am. 75, 1191-1194],而去相关条件下的阈值与频率无关。然而,窄带刺激中的固有包络波动导致了名义 ILD 的瞬间变化,这使得测量阈值的解释变得复杂。因此,第二个实验采用了低波动噪声令牌,揭示了两耳去相关本身的强烈频率依赖性的明显影响,其幅度从低频到高频逐渐减小。这些测量结果与 ILD 敏感神经元的已知整合时间一致,也表明在潜在的“ILD”任务中,隐蔽的 ITD 线索仍然存在持续的影响。

相似文献

2
Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
J Neurosci. 2016 Sep 21;36(38):9908-21. doi: 10.1523/JNEUROSCI.1421-16.2016.
7
Stimulus-frequency-dependent dominance of sound localization cues across the cochleotopic map of the inferior colliculus.
J Neurophysiol. 2020 May 1;123(5):1791-1807. doi: 10.1152/jn.00713.2019. Epub 2020 Mar 18.
8
Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences.
J Neurophysiol. 1995 Mar;73(3):1043-62. doi: 10.1152/jn.1995.73.3.1043.
9
Binaural-cue Weighting and Training-Induced Reweighting Across Frequencies.
Trends Hear. 2022 Jan-Dec;26:23312165221104872. doi: 10.1177/23312165221104872.
10
Combination of Interaural Level and Time Difference in Azimuthal Sound Localization in Owls.
eNeuro. 2017 Dec 14;4(6). doi: 10.1523/ENEURO.0238-17.2017. eCollection 2017 Nov-Dec.

引用本文的文献

1
The relationship between interaural coherence, interaural level differences, and binaural fusion.
Hear Res. 2025 May;460:109241. doi: 10.1016/j.heares.2025.109241. Epub 2025 Mar 16.
4
Impact of processing-latency induced interaural delay and level discrepancy on sensitivity to interaural level differences in cochlear implant users.
Eur Arch Otorhinolaryngol. 2023 Dec;280(12):5241-5249. doi: 10.1007/s00405-023-08013-w. Epub 2023 May 23.
5
Age-Related Changes in Interaural-Level-Difference-Based Across-Frequency Binaural Interference.
Front Aging Neurosci. 2022 Jul 27;14:887401. doi: 10.3389/fnagi.2022.887401. eCollection 2022.
6
Considerations for Fitting Cochlear Implants Bimodally and to the Single-Sided Deaf.
Trends Hear. 2022 Jan-Dec;26:23312165221108259. doi: 10.1177/23312165221108259.
7
Spectral weighting functions for lateralization and localization of complex sound.
J Acoust Soc Am. 2022 May;151(5):3409. doi: 10.1121/10.0011469.

本文引用的文献

1
No more than "slight" hearing loss and degradations in binaural processing.
J Acoust Soc Am. 2019 Apr;145(4):2094. doi: 10.1121/1.5096652.
2
The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints.
Hear Res. 2019 Jun;377:109-121. doi: 10.1016/j.heares.2019.03.011. Epub 2019 Mar 15.
3
Spatial variation in signal and sensory precision both constrain auditory acuity at high frequencies.
Hear Res. 2018 Dec;370:65-73. doi: 10.1016/j.heares.2018.10.002. Epub 2018 Oct 4.
5
Physiological models of the lateral superior olive.
PLoS Comput Biol. 2017 Dec 27;13(12):e1005903. doi: 10.1371/journal.pcbi.1005903. eCollection 2017 Dec.
6
Cortical Measures of Binaural Processing Predict Spatial Release from Masking Performance.
Front Hum Neurosci. 2017 Mar 21;11:124. doi: 10.3389/fnhum.2017.00124. eCollection 2017.
7
Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
J Neurosci. 2016 Sep 21;36(38):9908-21. doi: 10.1523/JNEUROSCI.1421-16.2016.
8
Six Degrees of Auditory Spatial Separation.
J Assoc Res Otolaryngol. 2016 Jun;17(3):209-21. doi: 10.1007/s10162-016-0560-1. Epub 2016 Mar 31.
9
Transaural experiments and a revised duplex theory for the localization of low-frequency tones.
J Acoust Soc Am. 2016 Feb;139(2):968-85. doi: 10.1121/1.4941915.
10
Sound frequency-invariant neural coding of a frequency-dependent cue to sound source location.
J Neurophysiol. 2015 Jul;114(1):531-9. doi: 10.1152/jn.00062.2015. Epub 2015 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验