Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
J Am Chem Soc. 2021 Jul 21;143(28):10735-10742. doi: 10.1021/jacs.1c04942. Epub 2021 Jul 9.
Fluorescence anisotropy (FA) holds great potential for multiplexed analysis and imaging of biomolecules since it can effectively discriminate fluorophores with overlapping emission spectra. Nevertheless, its susceptibility to environmental variation hampers its widespread applications in biology and biotechnology. In this study, we design FA DNA frameworks (FAFs) by scaffolding fluorophores in a fluorescent protein-like microenvironment. We find that the FA stability of the fluorophores is remarkably improved due to the sequestration effects of FAFs. The FA level of the fluorophores can be finely tuned when placed at different locations on an FAF, analogous to spectral shifts of protein-bound fluorophores. The high programmability of FAFs further enables the design of a spectrum of encoded FA barcodes for multiplexed sensing of nucleic acids and multiplexed labeling of live cells. This FAF system thus establishes a new paradigm for designing multiplexing FA probes for cellular imaging and other biological applications.
荧光各向异性(FA)在对生物分子进行多重分析和成像方面具有很大的潜力,因为它可以有效地区分具有重叠发射光谱的荧光团。然而,其对环境变化的敏感性限制了它在生物学和生物技术中的广泛应用。在本研究中,我们通过将荧光团支架在类似于荧光蛋白的微环境中设计出 FA DNA 框架(FAFs)。我们发现,由于 FAFs 的隔离作用,荧光团的 FA 稳定性得到了显著提高。当荧光团放置在 FAF 的不同位置时,其 FA 水平可以进行精细调节,类似于蛋白质结合荧光团的光谱位移。FAFs 的高可编程性进一步使得设计了一系列编码 FA 条码,用于对核酸进行多重检测和对活细胞进行多重标记。因此,该 FAF 系统为设计用于细胞成像和其他生物应用的多重 FA 探针建立了新的范例。