Suppr超能文献

TAB2 NZF结构域对K6连接的多聚泛素链特异性识别的结构基础。

Structural basis for specific recognition of K6-linked polyubiquitin chains by the TAB2 NZF domain.

作者信息

Li Yanjun, Okatsu Kei, Fukai Shuya, Sato Yusuke

机构信息

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.

出版信息

Biophys J. 2021 Aug 17;120(16):3355-3362. doi: 10.1016/j.bpj.2021.06.037. Epub 2021 Jul 7.

Abstract

TAK1-binding protein 2 (TAB2) has generally been considered to bind specifically to K63-linked polyubiquitin chains via its C-terminal Npl4 zinc-finger (NZF) domain. However, a recent study showed that the NZF domain of TAB2 (TAB2-NZF) could also interact with K6-linked polyubiquitin chains. Here, we report the crystal structure of TAB2-NZF in complex with K6-linked diubiquitin (K6-Ub) at 1.99-Å resolution. TAB2-NZF simultaneously interacts with the distal and proximal ubiquitin moieties of K6-Ub. By comparing the structures of TAB2-NZF in complex with K6-Ub and with K63-linked diubiquitin (K63-Ub), we reveal that the binding mechanism of TAB2-NZF with K6-Ub is similar to that with K63-Ub, except for the flexible C-terminal region of the distal ubiquitin. Therefore, we conclude that the C-terminal flexibility of the distal ubiquitin contributes to the dual specificity of TAB2-NZF toward K6- and K63-linked ubiquitin chains. This study provides important insights into the functions of K6-linked ubiquitin chains, which are currently unclear.

摘要

TAK1结合蛋白2(TAB2)通常被认为通过其C末端的Npl4锌指(NZF)结构域特异性结合K63连接的多聚泛素链。然而,最近的一项研究表明,TAB2的NZF结构域(TAB2-NZF)也能与K6连接的多聚泛素链相互作用。在此,我们报告了TAB2-NZF与K6连接的双泛素(K6-Ub)复合物的晶体结构,分辨率为1.99 Å。TAB2-NZF同时与K6-Ub的远端和近端泛素部分相互作用。通过比较TAB2-NZF与K6-Ub以及与K63连接的双泛素(K63-Ub)复合物的结构,我们发现除了远端泛素的柔性C末端区域外,TAB2-NZF与K6-Ub的结合机制与与K63-Ub的相似。因此,我们得出结论,远端泛素的C末端柔性有助于TAB2-NZF对K6和K63连接的泛素链的双重特异性。这项研究为目前尚不清楚的K6连接的泛素链的功能提供了重要见解。

相似文献

1
Structural basis for specific recognition of K6-linked polyubiquitin chains by the TAB2 NZF domain.
Biophys J. 2021 Aug 17;120(16):3355-3362. doi: 10.1016/j.bpj.2021.06.037. Epub 2021 Jul 7.
3
Dynamic recognition and linkage specificity in K63 di-ubiquitin and TAB2 NZF domain complex.
Sci Rep. 2018 Nov 7;8(1):16478. doi: 10.1038/s41598-018-34605-2.
4
Molecular determinants of polyubiquitin recognition by continuous ubiquitin-binding domains of Rad18.
Biochemistry. 2015 Mar 31;54(12):2136-48. doi: 10.1021/bi5012546. Epub 2015 Mar 19.
6
Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain.
Nat Struct Mol Biol. 2009 Dec;16(12):1328-30. doi: 10.1038/nsmb.1731. Epub 2009 Nov 22.
7
Solution structure of the HOIL-1L NZF domain reveals a conformational switch regulating linear ubiquitin affinity.
J Biol Chem. 2023 Sep;299(9):105165. doi: 10.1016/j.jbc.2023.105165. Epub 2023 Aug 16.
8
The ASCC2 CUE domain in the ALKBH3-ASCC DNA repair complex recognizes adjacent ubiquitins in K63-linked polyubiquitin.
J Biol Chem. 2022 Feb;298(2):101545. doi: 10.1016/j.jbc.2021.101545. Epub 2021 Dec 28.
9
Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains.
EMBO Rep. 2009 May;10(5):466-73. doi: 10.1038/embor.2009.55. Epub 2009 Apr 17.
10
TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains.
Mol Cell. 2004 Aug 27;15(4):535-48. doi: 10.1016/j.molcel.2004.08.008.

引用本文的文献

2
Secondary interactions in ubiquitin-binding domains achieve linkage or substrate specificity.
Cell Rep. 2024 Aug 27;43(8):114545. doi: 10.1016/j.celrep.2024.114545. Epub 2024 Jul 23.
3
Mechanism of Lys6 poly-ubiquitin specificity by the L. pneumophila deubiquitinase LotA.
Mol Cell. 2023 Jan 5;83(1):105-120.e5. doi: 10.1016/j.molcel.2022.11.022. Epub 2022 Dec 19.

本文引用的文献

1
LUBAC-mediated linear ubiquitination: a crucial regulator of immune signaling.
Proc Jpn Acad Ser B Phys Biol Sci. 2021;97(3):120-133. doi: 10.2183/pjab.97.007.
2
TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses.
Front Immunol. 2021 Jan 5;11:608976. doi: 10.3389/fimmu.2020.608976. eCollection 2020.
4
The Role of Atypical Ubiquitin Chains in the Regulation of the Antiviral Innate Immune Response.
Front Cell Dev Biol. 2020 Jan 22;7:392. doi: 10.3389/fcell.2019.00392. eCollection 2019.
5
Insights into ubiquitin chain architecture using Ub-clipping.
Nature. 2019 Aug;572(7770):533-537. doi: 10.1038/s41586-019-1482-y. Epub 2019 Aug 15.
6
The Many Roles of Ubiquitin in NF-κB Signaling.
Biomedicines. 2018 Apr 10;6(2):43. doi: 10.3390/biomedicines6020043.
7
TAK1 regulates skeletal muscle mass and mitochondrial function.
JCI Insight. 2018 Feb 8;3(3). doi: 10.1172/jci.insight.98441.
8
The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy.
Trends Biochem Sci. 2017 Nov;42(11):873-886. doi: 10.1016/j.tibs.2017.09.002. Epub 2017 Sep 22.
9
Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling.
Mol Cell. 2017 Oct 5;68(1):233-246.e5. doi: 10.1016/j.molcel.2017.08.020. Epub 2017 Sep 21.
10
Bacterial effector NleL promotes enterohemorrhagic E. coli-induced attaching and effacing lesions by ubiquitylating and inactivating JNK.
PLoS Pathog. 2017 Jul 28;13(7):e1006534. doi: 10.1371/journal.ppat.1006534. eCollection 2017 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验