Suppr超能文献

利用 FCS 技术在存在噪声和光漂白的情况下准确测量蛋白质浓度。

Using FCS to accurately measure protein concentration in the presence of noise and photobleaching.

机构信息

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada.

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Institut Curie, PSL University, CNRS, Paris, France; Nuclear Dynamics, Sorbonne University, Paris, France.

出版信息

Biophys J. 2021 Oct 5;120(19):4230-4241. doi: 10.1016/j.bpj.2021.06.035. Epub 2021 Jul 7.

Abstract

Quantitative cell biology requires precise and accurate concentration measurements, resolved both in space and time. Fluorescence correlation spectroscopy (FCS) has been held as a promising technique to perform such measurements because the fluorescence fluctuations it relies on are directly dependent on the absolute number of fluorophores in the detection volume. However, the most interesting applications are in cells, where autofluorescence and confinement result in strong background noise and important levels of photobleaching. Both noise and photobleaching introduce systematic bias in FCS concentration measurements and need to be corrected for. Here, we propose to make use of the photobleaching inevitably occurring in confined environments to perform series of FCS measurements at different fluorophore concentration, which we show allows a precise in situ measurement of both background noise and molecular brightness. Such a measurement can then be used as a calibration to transform confocal intensity images into concentration maps. The power of this approach is first illustrated with in vitro measurements using different dye solutions, then its applicability for in vivo measurements is demonstrated in Drosophila embryos for a model nuclear protein and for two morphogens, Bicoid and Capicua.

摘要

定量细胞生物学需要精确和准确的浓度测量,在空间和时间上都要得到解析。荧光相关光谱(FCS)被认为是一种很有前途的技术,可以进行这样的测量,因为它所依赖的荧光波动直接取决于检测体积中荧光团的绝对数量。然而,最有趣的应用是在细胞中,其中自发荧光和限制导致强烈的背景噪声和重要程度的荧光漂白。噪声和荧光漂白都会在 FCS 浓度测量中引入系统偏差,需要进行校正。在这里,我们建议利用在受限环境中不可避免的荧光漂白,在不同荧光团浓度下进行一系列的 FCS 测量,我们表明这允许对背景噪声和分子亮度进行精确的原位测量。然后,这种测量可以用作将共聚焦强度图像转换为浓度图的校准。这种方法的有效性首先通过使用不同染料溶液的体外测量得到了说明,然后在果蝇胚胎中对一种模型核蛋白和两种形态发生素,Bicoid 和 Capicua,进行了体内测量的适用性证明。

相似文献

1
Using FCS to accurately measure protein concentration in the presence of noise and photobleaching.
Biophys J. 2021 Oct 5;120(19):4230-4241. doi: 10.1016/j.bpj.2021.06.035. Epub 2021 Jul 7.
2
Photobleaching in two-photon scanning fluorescence correlation spectroscopy.
Chemphyschem. 2008 Jan 11;9(1):147-58. doi: 10.1002/cphc.200700579.
3
Cross-validating FRAP and FCS to quantify the impact of photobleaching on in vivo binding estimates.
Biophys J. 2010 Nov 3;99(9):3093-101. doi: 10.1016/j.bpj.2010.08.059.
6
Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy.
J Phys Chem A. 2007 Jan 25;111(3):429-40. doi: 10.1021/jp0646325.
7
Quantification of fluorophore copy number from intrinsic fluctuations during fluorescence photobleaching.
Biophys J. 2011 Nov 2;101(9):2284-93. doi: 10.1016/j.bpj.2011.09.032. Epub 2011 Nov 1.
8
Accessing molecular dynamics in cells by fluorescence correlation spectroscopy.
Biol Chem. 2001 Mar;382(3):491-4. doi: 10.1515/BC.2001.061.
9
Accurate determination of membrane dynamics with line-scan FCS.
Biophys J. 2009 Mar 4;96(5):1999-2008. doi: 10.1016/j.bpj.2008.12.3888.

引用本文的文献

1
Both the transcriptional activator, Bcd, and repressor, Cic, form small mobile oligomeric clusters.
Biophys J. 2025 Mar 18;124(6):980-995. doi: 10.1016/j.bpj.2024.08.011. Epub 2024 Aug 20.

本文引用的文献

1
Capicua is a fast-acting transcriptional brake.
Curr Biol. 2021 Aug 23;31(16):3639-3647.e5. doi: 10.1016/j.cub.2021.05.061. Epub 2021 Jun 23.
2
Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED-FCS.
Nat Protoc. 2019 Apr;14(4):1054-1083. doi: 10.1038/s41596-019-0127-9. Epub 2019 Mar 6.
3
Live Imaging of mRNA Transcription in Drosophila Embryos.
Methods Mol Biol. 2018;1863:165-182. doi: 10.1007/978-1-4939-8772-6_10.
4
Bicoid gradient formation mechanism and dynamics revealed by protein lifetime analysis.
Mol Syst Biol. 2018 Sep 4;14(9):e8355. doi: 10.15252/msb.20188355.
5
Quantitative mapping of fluorescently tagged cellular proteins using FCS-calibrated four-dimensional imaging.
Nat Protoc. 2018 Jun;13(6):1445-1464. doi: 10.1038/nprot.2018.040. Epub 2018 May 24.
6
Fluorescence Correlation Spectroscopy with Photobleaching Correction in Slowly Diffusing Systems.
J Fluoresc. 2018 Mar;28(2):505-511. doi: 10.1007/s10895-018-2210-y. Epub 2018 Jan 24.
7
Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data.
Methods. 2018 May 1;140-141:62-73. doi: 10.1016/j.ymeth.2017.09.010. Epub 2017 Sep 28.
8
Morphogen interpretation: concentration, time, competence, and signaling dynamics.
Wiley Interdiscip Rev Dev Biol. 2017 Jul;6(4). doi: 10.1002/wdev.271. Epub 2017 Mar 20.
9
Buffering Global Variability of Morphogen Gradients.
Dev Cell. 2017 Mar 13;40(5):429-438. doi: 10.1016/j.devcel.2016.12.012.
10
High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells.
Nat Biotechnol. 2015 Apr;33(4):384-9. doi: 10.1038/nbt.3146. Epub 2015 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验