Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada.
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Institut Curie, PSL University, CNRS, Paris, France; Nuclear Dynamics, Sorbonne University, Paris, France.
Biophys J. 2021 Oct 5;120(19):4230-4241. doi: 10.1016/j.bpj.2021.06.035. Epub 2021 Jul 7.
Quantitative cell biology requires precise and accurate concentration measurements, resolved both in space and time. Fluorescence correlation spectroscopy (FCS) has been held as a promising technique to perform such measurements because the fluorescence fluctuations it relies on are directly dependent on the absolute number of fluorophores in the detection volume. However, the most interesting applications are in cells, where autofluorescence and confinement result in strong background noise and important levels of photobleaching. Both noise and photobleaching introduce systematic bias in FCS concentration measurements and need to be corrected for. Here, we propose to make use of the photobleaching inevitably occurring in confined environments to perform series of FCS measurements at different fluorophore concentration, which we show allows a precise in situ measurement of both background noise and molecular brightness. Such a measurement can then be used as a calibration to transform confocal intensity images into concentration maps. The power of this approach is first illustrated with in vitro measurements using different dye solutions, then its applicability for in vivo measurements is demonstrated in Drosophila embryos for a model nuclear protein and for two morphogens, Bicoid and Capicua.
定量细胞生物学需要精确和准确的浓度测量,在空间和时间上都要得到解析。荧光相关光谱(FCS)被认为是一种很有前途的技术,可以进行这样的测量,因为它所依赖的荧光波动直接取决于检测体积中荧光团的绝对数量。然而,最有趣的应用是在细胞中,其中自发荧光和限制导致强烈的背景噪声和重要程度的荧光漂白。噪声和荧光漂白都会在 FCS 浓度测量中引入系统偏差,需要进行校正。在这里,我们建议利用在受限环境中不可避免的荧光漂白,在不同荧光团浓度下进行一系列的 FCS 测量,我们表明这允许对背景噪声和分子亮度进行精确的原位测量。然后,这种测量可以用作将共聚焦强度图像转换为浓度图的校准。这种方法的有效性首先通过使用不同染料溶液的体外测量得到了说明,然后在果蝇胚胎中对一种模型核蛋白和两种形态发生素,Bicoid 和 Capicua,进行了体内测量的适用性证明。