School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom.
Bioinspir Biomim. 2021 Aug 4;16(5). doi: 10.1088/1748-3190/ac1307.
Insect visual navigation is often assumed to depend on panoramic views of the horizon, and how these change as the animal moves. However, it is known that honey bees can visually navigate in flat, open meadows where visual information at the horizon is minimal, or would remain relatively constant across a wide range of positions. In this paper we hypothesise that these animals can navigate using view memories of the ground. We find that in natural scenes, low resolution views from an aerial perspective of ostensibly self-similar terrain (e.g. within a field of grass) provide surprisingly robust descriptors of precise spatial locations. We propose a new visual route following approach that makes use of transverse oscillations to centre a flight path along a sequence of learned views of the ground. We deploy this model on an autonomous quadcopter and demonstrate that it provides robust performance in the real world on journeys of up to 30 m. The success of our method is contingent on a robust view matching process which can evaluate the familiarity of a view with a degree of translational invariance. We show that a previously developed wavelet based bandpass orientated filter approach fits these requirements well, exhibiting double the catchment area of standard approaches. Using a realistic simulation package, we evaluate the robustness of our approach to variations in heading direction and aircraft height between inbound and outbound journeys. We also demonstrate that our approach can operate using a vision system with a biologically relevant visual acuity and viewing direction.
昆虫的视觉导航通常被认为依赖于对地平线的全景视图,以及动物移动时这些视图的变化。然而,人们已经知道,蜜蜂可以在平坦开阔的草地上进行视觉导航,而这些草地的地平线上的视觉信息很少,或者在很大的位置范围内相对保持不变。在本文中,我们假设这些动物可以利用地面的视图记忆进行导航。我们发现,在自然场景中,从空中视角对看似自相似地形(例如在一片草地中)进行低分辨率的观察,提供了对精确空间位置的惊人稳健描述符。我们提出了一种新的视觉路径跟随方法,该方法利用横向振荡使飞行路径沿着地面的一系列学习视图居中。我们将该模型部署在自主四旋翼飞行器上,并证明它在长达 30 米的真实世界旅程中具有稳健的性能。我们方法的成功取决于一个稳健的视图匹配过程,该过程可以以一定的平移不变性评估视图的熟悉程度。我们表明,以前开发的基于小波的带通定向滤波器方法很好地满足了这些要求,其集水区是标准方法的两倍。使用现实的模拟包,我们评估了我们的方法在进出行程之间的航向方向和飞机高度变化时的鲁棒性。我们还证明,我们的方法可以使用具有生物学相关视觉锐度和观察方向的视觉系统进行操作。