Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
Laboratorio Resonancia Magnética de Investigación, Hospital Nacional de Parapléjicos, Toledo, Spain.
Neurobiol Dis. 2021 Sep;157:105442. doi: 10.1016/j.nbd.2021.105442. Epub 2021 Jul 8.
Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1). These mice display SZ-like behavioral deficits. The cellular and molecular underpinnings of the behavioral deficits in Nrg1 mice remain to be established. With multiple approaches including Magnetic Resonance Spectroscopy (MRS), electrophysiology, quantitative imaging and molecular analysis we found that Nrg1 haploinsufficiency impairs the inhibitory cortical circuits. We observed changes in the expression of molecules involved in GABAergic neurotransmission, decreased density of Vglut1 excitatory buttons onto Parvalbumin interneurons and decreased frequency of spontaneous inhibitory postsynaptic currents. Moreover, we found a decreased number of Parvalbumin positive interneurons in the cortex and altered expression of Calretinin. Interestingly, we failed to detect other alterations in excitatory neurons that were previously reported in ErbB4 null mice suggesting that the Nrg1 haploinsufficiency does not entirely phenocopies ErbB4 deletions. Altogether, this study suggests that Nrg1 haploinsufficiency primarily affects the cortical inhibitory circuits in the cortex and provides new insights into the structural and molecular synaptic impairment caused by NRG1 hypofunction in a preclinical model of SZ.
神经调节蛋白 1(NRG1)及其受体 ERBB4 是精神分裂症(SZ)的风险基因,它们控制兴奋性和抑制性皮质回路的发育。大多数研究都集中在对 ErbB4 缺陷型小鼠的特征描述上。然而,ErbB4 的缺失同时会干扰 Nrg1 和神经调节蛋白 3(Nrg3)的信号转导,Nrg3 是另一种在皮质中表达的配体。此外,与 SZ 相关的 NRG1 多态性主要位于非编码区域,它们可能部分降低 Nrg1 的表达。在这里,为了研究皮质回路中 NRG1 部分功能丧失的相关性,我们对最近开发的 Nrg1(Nrg1)半不足小鼠模型进行了特征描述。这些小鼠表现出类似 SZ 的行为缺陷。Nrg1 小鼠行为缺陷的细胞和分子基础仍有待确定。通过包括磁共振波谱(MRS)、电生理学、定量成像和分子分析在内的多种方法,我们发现 Nrg1 半不足会损害抑制性皮质回路。我们观察到 GABA 能神经传递相关分子表达的变化,Vglut1 兴奋性按钮到 Parvalbumin 中间神经元的密度降低,以及自发性抑制性突触后电流的频率降低。此外,我们发现皮质中的 Parvalbumin 阳性中间神经元数量减少,Calretinin 的表达改变。有趣的是,我们没有检测到以前在 ErbB4 缺失型小鼠中报道的兴奋性神经元的其他改变,这表明 Nrg1 半不足不完全模拟 ErbB4 缺失。总的来说,这项研究表明,Nrg1 半不足主要影响皮质中的抑制性皮质回路,并为在 SZ 的临床前模型中 NRG1 功能低下引起的结构和分子突触损伤提供了新的见解。