Suppr超能文献

基于深度学习的宏蛋白质组学数据肽段鉴定。

Deep learning for peptide identification from metaproteomics datasets.

机构信息

Department of Computer Science and Engineering, University of North Texas, TX, USA.

Department of Biomedical Engineering, University of North Texas, TX, USA.

出版信息

J Proteomics. 2021 Sep 15;247:104316. doi: 10.1016/j.jprot.2021.104316. Epub 2021 Jul 8.

Abstract

Metaproteomics is becoming widely used in microbiome research for gaining insights into the functional state of the microbial community. Current metaproteomics studies are generally based on high-throughput tandem mass spectrometry (MS/MS) coupled with liquid chromatography. In this paper, we proposed a deep-learning-based algorithm, named DeepFilter, for improving peptide identifications from a collection of tandem mass spectra. The key advantage of the DeepFilter is that it does not need ad hoc training or fine-tuning as in existing filtering tools. DeepFilter is freely available under the GNU GPL license at https://github.com/Biocomputing-Research-Group/DeepFilter. SIGNIFICANCE: The identification of peptides and proteins from MS data involves the computational procedure of searching MS/MS spectra against a predefined protein sequence database and assigning top-scored peptides to spectra. Existing computational tools are still far from being able to extract all the information out of MS/MS data sets acquired from metaproteome samples. Systematical experiment results demonstrate that the DeepFilter identified up to 12% and 9% more peptide-spectrum-matches and proteins, respectively, compared with existing filtering algorithms, including Percolator, Q-ranker, PeptideProphet, and iProphet, on marine and soil microbial metaproteome samples with false discovery rate at 1%. The taxonomic analysis shows that DeepFilter found up to 7%, 10%, and 14% more species from marine, soil, and human gut samples compared with existing filtering algorithms. Therefore, DeepFilter was believed to generalize properly to new, previously unseen peptide-spectrum-matches and can be readily applied in peptide identification from metaproteomics data.

摘要

蛋白质组学在微生物组研究中得到了广泛应用,有助于深入了解微生物群落的功能状态。目前的蛋白质组学研究通常基于高通量串联质谱(MS/MS)与液相色谱的联用。在本文中,我们提出了一种基于深度学习的算法,名为 DeepFilter,用于提高串联质谱谱图中肽段鉴定的准确率。DeepFilter 的主要优势在于,它不需要像现有过滤工具那样进行专门的训练或微调。DeepFilter 可在 https://github.com/Biocomputing-Research-Group/DeepFilter 上根据 GNU GPL 许可证免费获取。

重要意义

从 MS 数据中鉴定肽段和蛋白质涉及到对 MS/MS 谱图与预定义蛋白质序列数据库进行搜索,并将得分最高的肽段分配给谱图的计算过程。现有的计算工具仍然远远不能从海洋和土壤微生物蛋白质组样本中获取的 MS/MS 数据集提取所有信息。系统实验结果表明,与现有的过滤算法(包括 Percolator、Q-ranker、PeptideProphet 和 iProphet)相比,DeepFilter 在海洋、土壤和人类肠道微生物蛋白质组样本中分别鉴定出多达 12%和 9%的肽段谱图匹配和蛋白质,假阳性率为 1%。分类分析表明,与现有的过滤算法相比,DeepFilter 从海洋、土壤和人类肠道样本中分别鉴定出多达 7%、10%和 14%的更多物种。因此,DeepFilter 可以正确地推广到新的、以前未见过的肽段谱图,并且可以很容易地应用于蛋白质组学数据中的肽段鉴定。

相似文献

1
Deep learning for peptide identification from metaproteomics datasets.
J Proteomics. 2021 Sep 15;247:104316. doi: 10.1016/j.jprot.2021.104316. Epub 2021 Jul 8.
2
FineFDR: Fine-grained Taxonomy-specific False Discovery Rates Control in Metaproteomics.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:287-292. doi: 10.1109/bibm55620.2022.9995401. Epub 2023 Jan 2.
3
Sipros Ensemble improves database searching and filtering for complex metaproteomics.
Bioinformatics. 2018 Mar 1;34(5):795-802. doi: 10.1093/bioinformatics/btx601.
4
MSBooster: improving peptide identification rates using deep learning-based features.
Nat Commun. 2023 Jul 27;14(1):4539. doi: 10.1038/s41467-023-40129-9.
5
DeepRescore: Leveraging Deep Learning to Improve Peptide Identification in Immunopeptidomics.
Proteomics. 2020 Nov;20(21-22):e1900334. doi: 10.1002/pmic.201900334. Epub 2020 Sep 27.
6
Deep learning embedder method and tool for mass spectra similarity search.
J Proteomics. 2021 Feb 10;232:104070. doi: 10.1016/j.jprot.2020.104070. Epub 2020 Dec 8.
7
iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates.
Mol Cell Proteomics. 2011 Dec;10(12):M111.007690. doi: 10.1074/mcp.M111.007690. Epub 2011 Aug 29.
10
Improving X!Tandem on peptide identification from mass spectrometry by self-boosted Percolator.
IEEE/ACM Trans Comput Biol Bioinform. 2012 Sep-Oct;9(5):1273-80. doi: 10.1109/TCBB.2012.86.

引用本文的文献

1
Next-generation probiotics and engineered BEVs for precision therapeutics in osteoporosis.
Front Nutr. 2025 Jul 1;12:1581971. doi: 10.3389/fnut.2025.1581971. eCollection 2025.
2
SEMQuant: Extending Sipros-Ensemble with Match-Between-Runs for Comprehensive Quantitative Metaproteomics.
Bioinform Res Appl. 2024 Jul;14956:102-115. doi: 10.1007/978-981-97-5087-0_9. Epub 2024 Jul 12.
3
Microbial Proteins in Stomach Biopsies Associated with Gastritis, Ulcer, and Gastric Cancer.
Molecules. 2022 Aug 24;27(17):5410. doi: 10.3390/molecules27175410.
4
The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine.
J Pers Med. 2022 Mar 24;12(4):523. doi: 10.3390/jpm12040523.

本文引用的文献

1
Metaproteomics characterizes human gut microbiome function in colorectal cancer.
NPJ Biofilms Microbiomes. 2020 Mar 24;6(1):14. doi: 10.1038/s41522-020-0123-4.
2
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
3
Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil.
Nat Ecol Evol. 2018 Mar;2(3):499-509. doi: 10.1038/s41559-017-0463-5. Epub 2018 Jan 22.
4
Assessing species biomass contributions in microbial communities via metaproteomics.
Nat Commun. 2017 Nov 16;8(1):1558. doi: 10.1038/s41467-017-01544-x.
5
Sipros Ensemble improves database searching and filtering for complex metaproteomics.
Bioinformatics. 2018 Mar 1;34(5):795-802. doi: 10.1093/bioinformatics/btx601.
6
Deep Metaproteomics Approach for the Study of Human Microbiomes.
Anal Chem. 2017 Sep 5;89(17):9407-9415. doi: 10.1021/acs.analchem.7b02224. Epub 2017 Aug 11.
7
Metaproteomics reveals functional differences in intestinal microbiota development of preterm infants.
Mol Cell Proteomics. 2017 Sep;16(9):1610-1620. doi: 10.1074/mcp.RA117.000102. Epub 2017 Jul 6.
8
Challenges and perspectives of metaproteomic data analysis.
J Biotechnol. 2017 Nov 10;261:24-36. doi: 10.1016/j.jbiotec.2017.06.1201. Epub 2017 Jun 27.
10
Critical decisions in metaproteomics: achieving high confidence protein annotations in a sea of unknowns.
ISME J. 2017 Feb;11(2):309-314. doi: 10.1038/ismej.2016.132. Epub 2016 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验