Suppr超能文献

人工智能支持的多发性骨髓瘤改良风险分期在现实场景中有用。

AI-supported modified risk staging for multiple myeloma cancer useful in real-world scenario.

作者信息

Farswan Akanksha, Gupta Anubha, Gupta Ritu, Hazra Saswati, Khan Sadaf, Kumar Lalit, Sharma Atul

机构信息

SBILab, Department of ECE, Indraprastha Institute of Information Technology-Delhi, New Delhi 110020, India.

SBILab, Department of ECE, Indraprastha Institute of Information Technology-Delhi, New Delhi 110020, India.

出版信息

Transl Oncol. 2021 Sep;14(9):101157. doi: 10.1016/j.tranon.2021.101157. Epub 2021 Jul 8.

Abstract

INTRODUCTION

An efficient readily employable risk prognostication method is desirable for MM in settings where genomics tests cannot be performed owing to geographical/economical constraints. In this work, a new Modified Risk Staging (MRS) has been proposed for newly diagnosed Multiple Myeloma (NDMM) that exploits six easy-to-acquire clinical parameters i.e. age, albumin, β2-microglobulin (β2M), calcium, estimated glomerular filtration rate (eGFR) and hemoglobin.

MATERIALS AND METHODS

MRS was designed using a training cohort of 716 NDMM patients of our inhouse MM Indian (MMIn) cohort and validated on MMIn (n=354) cohort and MMRF (n=900) cohort. K-adaptive partitioning (KAP) was used to find new thresholds for the parameters. Risk staging rules, obtained via training a J48 classifier, were used to build MRS.

RESULTS

New thresholds were identified for albumin (3.6 g/dL), β2M (4.8 mg/L), calcium (11.13 mg/dL), eGFR (48.1 mL/min), and hemoglobin (12.3 g/dL) using KAP on the MMIn dataset. On the MMIn dataset, MRS outperformed ISS for OS prediction in terms of C-index, hazard ratios, and its corresponding p-values, but performs comparable in prediction of PFS. On both MMIn and MMRF datasets, MRS performed better than RISS in terms of C-index and p-values. A simple online tool was also designed to allow automated calculation of MRS based on the values of the parameters.

DISCUSSION

Our proposed ML-derived yet simple staging system, MRS, although does not employ genetic features, outperforms RISS as confirmed by better separability in KM survival curves and higher values of C-index on both MMIn and MMRF datasets.

FUNDING

Grant: BT/MED/30/SP11006/2015 (Department of Biotechnology, Govt. of India), Grant: DST/ICPS/CPS-Individual/2018/279(G) (Department of Science and Technology, Govt. of India), UGC-Senior Research Fellowship.

摘要

引言

在因地理/经济限制无法进行基因组检测的情况下,骨髓瘤(MM)需要一种高效且易于应用的风险预测方法。在这项研究中,针对新诊断的多发性骨髓瘤(NDMM)提出了一种新的改良风险分期(MRS)方法,该方法利用了六个易于获取的临床参数,即年龄、白蛋白、β2-微球蛋白(β2M)、钙、估计肾小球滤过率(eGFR)和血红蛋白。

材料与方法

MRS是使用我们内部的印度骨髓瘤(MMIn)队列中的716例NDMM患者的训练队列设计的,并在MMIn队列(n = 354)和MMRF队列(n = 900)中进行了验证。采用K自适应划分(KAP)来确定参数的新阈值。通过训练J48分类器获得的风险分期规则用于构建MRS。

结果

在MMIn数据集上使用KAP确定了白蛋白(3.6 g/dL)、β2M(4.8 mg/L)、钙(11.13 mg/dL)、eGFR(48.1 mL/min)和血红蛋白(12.3 g/dL)的新阈值。在MMIn数据集上,就C指数、风险比及其相应的p值而言,MRS在总生存期(OS)预测方面优于国际分期系统(ISS),但在无进展生存期(PFS)预测方面表现相当。在MMIn和MMRF数据集上,MRS在C指数和p值方面均优于修订国际分期系统(RISS)。还设计了一个简单的在线工具,以便根据参数值自动计算MRS。

讨论

我们提出的基于机器学习的简单分期系统MRS,虽然未采用基因特征,但在MMIn和MMRF数据集上,通过KM生存曲线中更好的可分离性以及更高的C指数值证实,其性能优于RISS。

资助

资助:BT/MED/30/SP11006/2015(印度政府生物技术部),资助:DST/ICPS/CPS-Individual/2018/279(G)(印度政府科学技术部),大学教育资助委员会高级研究奖学金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e355/8278429/5f2c451bde2a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验