Suppr超能文献

跨越自然养分限制梯度的微生物磷活化策略及与铁溶解特性相关联的证据

Microbial Phosphorus Mobilization Strategies Across a Natural Nutrient Limitation Gradient and Evidence for Linkage With Iron Solubilization Traits.

作者信息

Wang Shi, Walker Robert, Schicklberger Marcus, Nico Peter S, Fox Patricia M, Karaoz Ulas, Chakraborty Romy, Brodie Eoin L

机构信息

Ecology Department, Climate and Ecosystem Sciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

School of BioSciences, University of Melbourne, Parkville, VIC, Australia.

出版信息

Front Microbiol. 2021 Jun 23;12:572212. doi: 10.3389/fmicb.2021.572212. eCollection 2021.

Abstract

Microorganisms have evolved several mechanisms to mobilize and mineralize occluded and insoluble phosphorus (P), thereby promoting plant growth in terrestrial ecosystems. However, the linkages between microbial P-solubilization traits and the preponderance of insoluble P in natural ecosystems are not well known. We tested the P solubilization traits of hundreds of culturable bacteria representative of the rhizosphere from a natural gradient where P concentration and bioavailability decline as soil becomes progressively more weathered. Aluminum, iron phosphate and organic P (phytate) were expected to dominate in more weathered soils. A defined cultivation medium with these chemical forms of P was used for isolation. A combination of soil chemical, spectroscopic analyses and 16S rRNA gene sequencing were used to understand the ability for solubilization of these predominant forms of P. Locations with more occluded and organic P harbored the greatest abundance of P-mobilizing microorganisms, especially ( and spp.). Nearly all bacteria utilized aluminum phosphate, however fewer could subsist on iron phosphate (FePO) or phytate. Microorganisms isolated from phytic acid were also most effective at solubilizing FePO, suggesting that phytate solubilization may be linked to the ability to solubilize Fe. Significantly, we observed Fe to be co-located with P in organic patches in soil. Siderophore addition in lab experiments reinstated phytase mediated P-solubilization from Fe-phytate complexes. Taken together, these results indicate that metal-organic-P complex formation may limit enzymatic P solubilization from phytate in soil. Additionally, the linked traits of phytase and siderophore production were mostly restricted to specific clades within the . We propose that Fe complexation of organic P (e.g., phytate) represents a major constraint on P turnover and availability in acidic soils, as only a limited subset of bacteria appear to possess the traits required to access this persistent pool of soil P.

摘要

微生物已经进化出多种机制来活化和矿化被固定的及不溶性磷(P),从而促进陆地生态系统中的植物生长。然而,在自然生态系统中,微生物的磷溶解特性与不溶性磷占优势之间的联系尚不为人所知。我们从一个自然梯度中测试了数百种具有代表性的可培养根际细菌的磷溶解特性,在这个梯度中,随着土壤风化程度的增加,磷浓度和生物有效性会下降。在风化程度更高的土壤中,预计铝、磷酸铁和有机磷(植酸盐)会占主导地位。使用含有这些磷化学形态的特定培养基进行分离。结合土壤化学、光谱分析和16S rRNA基因测序来了解这些主要磷形态的溶解能力。含有更多固定态和有机磷的地点拥有最丰富的磷活化微生物,尤其是(和 spp.)。几乎所有细菌都能利用磷酸铝,然而,能够以磷酸铁(FePO)或植酸盐为生的细菌较少。从植酸中分离出的微生物在溶解FePO方面也最有效,这表明植酸溶解可能与溶解Fe的能力有关。值得注意的是,我们观察到在土壤的有机斑块中Fe与P共定位。在实验室实验中添加铁载体恢复了植酸酶介导的从铁 - 植酸盐复合物中溶解磷的过程。综上所述,这些结果表明金属 - 有机 - P复合物的形成可能会限制土壤中植酸盐酶促溶解磷的过程。此外,植酸酶和铁载体产生的相关特性大多局限于内的特定进化枝。我们提出,有机磷(如植酸盐)的铁络合是酸性土壤中磷周转和有效性的主要限制因素,因为似乎只有有限的一部分细菌具备获取这种持久性土壤磷库所需的特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2e2/8261140/90e550e0402b/fmicb-12-572212-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验