Suppr超能文献

人类D-天冬氨酸氧化酶:D-天冬氨酸代谢中的关键参与者。

Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism.

作者信息

Pollegioni Loredano, Molla Gianluca, Sacchi Silvia, Murtas Giulia

机构信息

Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.

出版信息

Front Mol Biosci. 2021 Jun 23;8:689719. doi: 10.3389/fmolb.2021.689719. eCollection 2021.

Abstract

In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.

摘要

近年来,氨基酸的D-对映体已被公认为存在于所有生物界的天然分子,发挥着多种生物学作用。在人类中,D-丝氨酸和D-天冬氨酸因其在中枢神经系统中的存在而受到关注。在此,我们聚焦于D-天冬氨酸,它参与谷氨酸能神经传递以及多种激素的合成。D-天冬氨酸的生物合成仍不明确,而其降解归因于过氧化物酶体中含黄素腺嘌呤二核苷酸(FAD)的D-天冬氨酸氧化酶。D-天冬氨酸的出现受到严格调控:出生后几天内其在大脑中的水平下降,而在出生后及成年期内分泌腺中其水平升高。人类D-天冬氨酸氧化酶(hDASPO)属于D-氨基酸氧化酶样家族:其三级结构与人类D-氨基酸氧化酶(hDAAO)极为相似,hDAAO是降解中性和碱性D-氨基酸的酶。hDASPO生理同工型(命名为hDASPO_341)的结构-功能关系以及较长同工型hDASPO_369的基因表达调控、分布和特性最近均已阐明。除底物偏好外,hDASPO和hDAAO在动力学效率、FAD结合亲和力、pH谱和寡聚状态方面也存在差异。这些差异表明进化产生了两种不同的方式来调节人脑中D-天冬氨酸和D-丝氨酸的水平。目前关于hDASPO的知识正在揭示人类组织中D-天冬氨酸水平调节的分子机制,并推动新的靶向治疗策略的发展。现在,有人提出在各种疾病(如精神分裂症)发作期间,NMDA受体介导的神经传递功能障碍是由神经系统中D-天冬氨酸代谢紊乱引起的:因此,设计旨在提高D-天冬氨酸水平的合适hDASPO抑制剂代表了一种新的且有用的治疗形式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b0f/8260693/91d94c65ddd9/fmolb-08-689719-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验