Department of Biomedical Sciences, University of Minnesota Duluth Medical School, Duluth, MN, USA.
Handb Exp Pharmacol. 2022;273:59-79. doi: 10.1007/164_2021_494.
The neurovascular unit (NVU) consists of multiple cell types including brain endothelial cells, pericytes, astrocytes, and neurons that function collectively to maintain homeostasis within the CNS microenvironment. As the principal barrier-forming component of the NVU, the endothelial cells perform an array of complex functions that require substantial energy resources. The principal metabolic pathways for producing ATP are glycolysis and mitochondrial oxidative phosphorylation. While previous studies have demonstrated that glycolysis is a primary pathway for most endothelial cells, details about the energy producing pathways of brain endothelial cells are not fully characterized. The contributions of glycolysis and mitochondrial respiration to energy metabolism are quantifiable using metabolic flux analysis that measures cellular oxygen consumption and acidification (proton production) in a closed microtiter plate format. ATP production rates are then calculated. The bioenergetics of the human brain microvascular endothelial cell line, hCMEC/D3, indicate that these cells exhibit relatively elevated rates of glycolytic flux and glycolytic ATP production, thus confirming their glycolytic nature even in the presence of abundant oxygen. Furthermore, energy producing pathways involving mitochondrial respiration are relatively low, although contributing significantly to total ATP production. Interestingly, the bioenergetics of the hCMEC/D3 cells are relatively similar to those of human primary brain microvascular endothelial cells (hBVECs). These findings allow a quantitative understanding of the bioenergetics of brain endothelial cells in a cultured and proliferative state and also provide a platform for comparative studies of disease states and conditions involving exposures to drugs or metabolic disruptors.
神经血管单元(NVU)由多种细胞类型组成,包括脑内皮细胞、周细胞、星形胶质细胞和神经元,它们共同作用维持中枢神经系统微环境的内稳态。作为 NVU 的主要屏障形成成分,内皮细胞具有多种复杂的功能,需要大量的能量资源。产生 ATP 的主要代谢途径是糖酵解和线粒体氧化磷酸化。虽然先前的研究表明糖酵解是大多数内皮细胞的主要途径,但脑内皮细胞的能量产生途径的细节尚未完全阐明。使用代谢通量分析可以定量测量糖酵解和线粒体呼吸对能量代谢的贡献,该分析测量封闭微滴定板格式中的细胞耗氧量和酸化(质子产生)。然后计算 ATP 产生率。人脑血管内皮细胞系 hCMEC/D3 的生物能量学表明,这些细胞表现出相对较高的糖酵解通量和糖酵解 ATP 产生率,因此即使在有丰富氧气的情况下,也证实了它们的糖酵解特性。此外,涉及线粒体呼吸的能量产生途径相对较低,尽管对总 ATP 产生有重要贡献。有趣的是,hCMEC/D3 细胞的生物能量学与人类原代脑微血管内皮细胞(hBVEC)的生物能量学相对相似。这些发现允许对培养和增殖状态下脑内皮细胞的生物能量学进行定量理解,并为涉及药物或代谢干扰物暴露的疾病状态和条件的比较研究提供了平台。