Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
Neuroscience Program, Tulane Brain Institute, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA.
Geroscience. 2022 Aug;44(4):1975-1994. doi: 10.1007/s11357-022-00550-2. Epub 2022 Apr 4.
Alterations of mitochondrial and glycolytic energy pathways related to aging could contribute to cerebrovascular dysfunction. We studied the impact of aging on energetics of primary human brain microvascular endothelial cells (HBMECs) by comparing the young (passages 7-9), pre-senescent (passages 13-15), and senescent (passages 20-21) cells. Pre-senescent HBMECs displayed decreased telomere length and undetectable telomerase activity although markers of senescence were unaffected. Bioenergetics in HBMECs were determined by measuring the oxygen consumption (OCR) and extracellular acidification (ECAR) rates. Cellular ATP production in young HBMECs was predominantly dependent on glycolysis with glutamine as the preferred fuel for mitochondrial oxidative phosphorylation (OXPHOS). In contrast, pre-senescent HBMECs displayed equal contribution to ATP production rate from glycolysis and OXPHOS with equal utilization of glutamine, glucose, and fatty acids as mitofuels. Compared to young, pre-senescent HBMECs showed a lower overall ATP production rate that was characterized by diminished contribution from glycolysis. Impairments of glycolysis displayed by pre-senescent cells included reduced basal glycolysis, compensatory glycolysis, and non-glycolytic acidification. Furthermore, impairments of mitochondrial respiration in pre-senescent cells involved the reduction of maximal respiration and spare respiratory capacity but intact basal and ATP production-related OCR. Proton leak and non-mitochondrial respiration, however, were unchanged in the pre-senescent HBMECs. HBMECS at passages 20-21 displayed expression of senescence markers and continued similar defects in glycolysis and worsened OXPHOS. Thus, for the first time, we characterized the bioenergetics of pre-senescent HBMECs comprehensively to identify the alterations of the energy pathways that could contribute to aging.
与衰老相关的线粒体和糖酵解能量途径的改变可能导致脑血管功能障碍。我们通过比较年轻(第 7-9 代)、早期衰老(第 13-15 代)和衰老(第 20-21 代)的人原代脑微血管内皮细胞(HBMEC),研究了衰老对其能量代谢的影响。尽管衰老标志物没有受到影响,但早期衰老的 HBMEC 显示端粒长度缩短和无法检测到端粒酶活性。通过测量耗氧量(OCR)和细胞外酸化率(ECAR)来确定 HBMEC 的生物能量。年轻的 HBMEC 细胞中的细胞内 ATP 生成主要依赖于糖酵解,谷氨酰胺是线粒体氧化磷酸化(OXPHOS)的首选燃料。相比之下,早期衰老的 HBMEC 显示出从糖酵解和 OXPHOS 到 ATP 生成率的相等贡献,并且谷氨酰胺、葡萄糖和脂肪酸作为线粒体燃料的利用率相等。与年轻的 HBMEC 相比,早期衰老的 HBMEC 显示出整体 ATP 生成率较低,其特征是糖酵解的贡献减少。早期衰老细胞中糖酵解的损伤包括基础糖酵解、代偿性糖酵解和非糖酵解酸化的减少。此外,早期衰老细胞中线粒体呼吸的损伤涉及最大呼吸和备用呼吸能力的降低,但基础和与 ATP 生成相关的 OCR 完整。质子泄漏和非线粒体呼吸在早期衰老的 HBMEC 中没有改变。在第 20-21 代的 HBMEC 中显示出衰老标志物的表达,并继续表现出类似的糖酵解缺陷和恶化的 OXPHOS。因此,我们首次全面描述了早期衰老的 HBMEC 的生物能量学,以确定可能导致衰老的能量途径的改变。