Suppr超能文献

探讨细胞浓度对微生物诱导碳酸钙沉淀(MICP)过程设计和开发的影响。

Insights into the influence of cell concentration in design and development of microbially induced calcium carbonate precipitation (MICP) process.

机构信息

Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.

School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia.

出版信息

PLoS One. 2021 Jul 12;16(7):e0254536. doi: 10.1371/journal.pone.0254536. eCollection 2021.

Abstract

Microbially induced calcium carbonate precipitation (MICP) process utilising the biogeochemical reactions for low energy cementation has recently emerged as a potential technology for numerous engineering applications. The design and development of an efficient MICP process depends upon several physicochemical and biological variables; amongst which the initial bacterial cell concentration is a major factor. The goal of this study is to assess the impact of initial bacterial cell concentration on ureolysis and carbonate precipitation kinetics along with its influence on the calcium carbonate crystal properties; as all these factors determine the efficacy of this process for specific engineering applications. We have also investigated the role of subsequent cell recharge in calcium carbonate precipitation kinetics for the first time. Experimental results showed that the kinetics of ureolysis and calcium carbonate precipitation are well-fitted by an exponential logistic equation for cell concentrations between optical density range of 0.1 OD to 0.4 OD. This equation is highly applicable for designing the optimal processes for microbially cemented soil stabilization applications using native or augmented bacterial cultures. Multiple recharge kinetics study revealed that the addition of fresh bacterial cells is an essential step to keep the fast rate of precipitation, as desirable in certain applications. Our results of calcium carbonate crystal morphology and mineralogy via scanning electron micrography, energy dispersive X-ray spectroscopy and X-ray diffraction analysis exhibited a notable impact of cell number and extracellular urease concentration on the properties of carbonate crystals. Lower cell numbers led to formation of larger crystals compared to high cell numbers and these crystals transform from vaterite phase to the calcite phase over time. This study has demonstrated the significance of kinetic models for designing large-scale MICP applications.

摘要

微生物诱导碳酸钙沉淀(MICP)过程利用生物地球化学反应进行低能耗胶结,最近已成为许多工程应用的潜在技术。高效 MICP 工艺的设计和开发取决于多种物理化学和生物变量;其中初始细菌细胞浓度是一个主要因素。本研究的目的是评估初始细菌细胞浓度对脲酶解和碳酸盐沉淀动力学的影响,以及其对碳酸钙晶体性质的影响;因为所有这些因素都决定了该工艺在特定工程应用中的效果。我们还首次研究了后续细胞再充电在碳酸钙沉淀动力学中的作用。实验结果表明,对于细胞浓度在光密度范围 0.1 OD 至 0.4 OD 之间的情况,脲酶解和碳酸钙沉淀动力学很好地符合指数逻辑方程。该方程非常适用于使用天然或增强的细菌培养物设计用于微生物胶结土壤稳定化应用的最佳工艺。多次再充电动力学研究表明,添加新鲜细菌细胞是保持快速沉淀速率的必要步骤,在某些应用中这是理想的。通过扫描电子显微镜、能量色散 X 射线能谱和 X 射线衍射分析对碳酸钙晶体形态和矿物学的研究结果表明,细胞数量和细胞外脲酶浓度对碳酸盐晶体性质有显著影响。与高细胞数相比,较低的细胞数导致形成更大的晶体,并且这些晶体随着时间的推移从文石相转变为方解石相。本研究表明了动力学模型在设计大规模 MICP 应用中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验