Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
Dairy Cattle Group, Dairy Research Center, Hokkaido Research Organization, Nakashibetsu, Hokkaido, 086-1135, Japan.
Biochem Biophys Res Commun. 2021 Sep 10;569:179-186. doi: 10.1016/j.bbrc.2021.07.015. Epub 2021 Jul 10.
An early and accurate pregnancy diagnosis method is required to improve the reproductive performance of cows. Here we developed an easy pregnancy detection method using vaginal mucosal membrane (VMM) with application of Reverse Transcription-Loop-mediated Isothermal Amplification (RT-LAMP) and machine learning. Cows underwent artificial insemination (AI) on day 0, followed by VMM-collection on day 17-18, and pregnancy diagnosis by ultrasonography on day 30. By RNA sequencing of VMM samples, three candidate genes for pregnancy markers (ISG15 and IFIT1: up-regulated, MUC16: down-regulated) were selected. Using these genes, we performed RT-LAMP and calculated the rise-up time (RUT), the first-time absorbance exceeded 0.05 in the reaction. We next determined the cutoff value and calculated accuracy, sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) for each marker evaluation. The IFIT1 scored the best performance at 92.5% sensitivity, but specificity was 77.5%, suggesting that it is difficult to eliminate false positives. We then developed a machine learning model trained with RUT of each marker combination to predict pregnancy. The model created with the RUT of IFIT1 and MUC16 combination showed high specificity (86.7%) and sensitivity (93.3%), which were higher compared to IFIT1 alone. In conclusion, using VMM with RT-LAMP and machine learning algorithm can be used for early pregnancy detection before the return of first estrus.
为了提高奶牛的繁殖性能,需要一种早期且准确的妊娠诊断方法。在这里,我们开发了一种使用阴道黏膜(VMM)的简单妊娠检测方法,该方法应用了反转录环介导等温扩增(RT-LAMP)和机器学习。奶牛在第 0 天接受人工授精(AI),然后在第 17-18 天采集 VMM,并在第 30 天通过超声进行妊娠诊断。通过 VMM 样本的 RNA 测序,选择了三个候选妊娠标志物基因(ISG15 和 IFIT1:上调,MUC16:下调)。使用这些基因,我们进行了 RT-LAMP,并计算了上升时间(RUT),即反应中第一次吸光度超过 0.05 的时间。然后,我们确定了每个标记物评估的截止值,并计算了准确性、灵敏度、特异性、阳性预测值(PPV)和阴性预测值(NPV)。IFIT1 的灵敏度为 92.5%,但特异性为 77.5%,这表明很难消除假阳性,表现最佳。然后,我们开发了一个使用每个标记物组合的 RUT 进行训练的机器学习模型来预测妊娠。使用 IFIT1 和 MUC16 组合的 RUT 创建的模型具有较高的特异性(86.7%)和灵敏度(93.3%),与单独使用 IFIT1 相比有所提高。总之,使用 VMM 结合 RT-LAMP 和机器学习算法可以在首次发情前进行早期妊娠检测。