Suppr超能文献

美国后 COVID-19“新常态”下的卫生系统数字化定位:横断面调查。

Digital Orientation of Health Systems in the Post-COVID-19 "New Normal" in the United States: Cross-sectional Survey.

机构信息

CU Business School, University of Colorado Denver, Denver, CO, United States.

出版信息

J Med Internet Res. 2021 Aug 16;23(8):e30453. doi: 10.2196/30453.

Abstract

BACKGROUND

Almost all health systems have developed some form of customer-facing digital technologies and have worked to align these systems to their existing electronic health records to accommodate the surge in remote and virtual care deliveries during the COVID-19 pandemic. Others have developed analytics-driven decision-making capabilities. However, it is not clear how health systems in the United States are embracing digital technologies and there is a gap in health systems' abilities to integrate workflows with expanding technologies to spur innovation and futuristic growth. There is a lack of reliable and reported estimates of the current and futuristic digital orientations of health systems. Periodic assessments will provide imperatives to policy formulation and align efforts to yield the transformative power of emerging digital technologies.

OBJECTIVE

The aim of this study was to explore and examine differences in US health systems with respect to digital orientations in the post-COVID-19 "new normal" in 2021. Differences were assessed in four dimensions: (1) analytics-oriented digital technologies (AODT), (2) customer-oriented digital technologies (CODT), (3) growth and innovation-oriented digital technologies (GODT), and (4) futuristic and experimental digital technologies (FEDT). The former two dimensions are foundational to health systems' digital orientation, whereas the latter two will prepare for future disruptions.

METHODS

We surveyed a robust group of health system chief executive officers (CEOs) across the United States from February to March 2021. Among the 625 CEOs, 135 (22%) responded to our survey. We considered the above four broad digital technology orientations, which were ratified with expert consensus. Secondary data were collected from the Agency for Healthcare Research and Quality Hospital Compendium, leading to a matched usable dataset of 124 health systems for analysis. We examined the relationship of adopting the four digital orientations to specific hospital characteristics and earlier reported factors as barriers or facilitators to technology adoption.

RESULTS

Health systems showed a lower level of CODT (mean 4.70) or GODT (mean 4.54) orientations compared with AODT (mean 5.03), and showed the lowest level of FEDT orientation (mean 4.31). The ordered logistic estimation results provided nuanced insights. Medium-sized (P<.001) health systems, major teaching health systems (P<.001), and systems with high-burden hospitals (P<.001) appear to be doing worse with respect to AODT orientations, raising some concerns. Health systems of medium (P<.001) and large (P=.02) sizes, major teaching health systems (P=.07), those with a high revenue (P=.05), and systems with high-burden hospitals (P<.001) have less CODT orientation. Health systems in the midwest (P=.05) and southern (P=.04) states are more likely to adopt GODT, whereas high-revenue (P=.004) and investor-ownership (P=.01) health systems are deterred from GODT. Health systems of a medium size, and those that are in the midwest (P<.001), south (P<.001), and west (P=.01) are more adept to FEDT, whereas medium (P<.001) and high-revenue (P<.001) health systems, and those with a high discharge rate (P=.04) or high burden (P=.003, P=.005) have subdued FEDT orientations.

CONCLUSIONS

Almost all health systems have some current foundational digital technological orientations to glean intelligence or service delivery to customers, with some notable exceptions. Comparatively, fewer health systems have growth or futuristic digital orientations. The transformative power of digital technologies can only be leveraged by adopting futuristic digital technologies. Thus, the disparities across these orientations suggest that a holistic, consistent, and well-articulated direction across the United States remains elusive. Accordingly, we suggest that a policy strategy and financial incentives are necessary to spur a well-visioned and articulated digital orientation for all health systems across the United States. In the absence of such a policy to collectively leverage digital transformations, differences in care across the country will continue to be a concern.

摘要

背景

几乎所有的医疗体系都已经开发出某种形式的面向客户的数字技术,并努力将这些系统与其现有的电子健康记录相匹配,以适应 COVID-19 大流行期间远程和虚拟护理的激增。其他系统则开发了基于分析的决策能力。然而,目前还不清楚美国的医疗体系是如何接受数字技术的,而且医疗体系在将工作流程与不断扩展的技术相结合以推动创新和未来增长方面的能力存在差距。缺乏对医疗体系当前和未来数字方向的可靠和报告估计。定期评估将为政策制定提供必要条件,并协调努力,发挥新兴数字技术的变革力量。

目的

本研究旨在探讨和考察 2021 年“后 COVID-19 新常态”时期美国医疗体系在数字方向上的差异。在四个方面评估了差异:(1)面向分析的数字技术(AODT),(2)面向客户的数字技术(CODT),(3)面向增长和创新的数字技术(GODT),(4)面向未来和实验性的数字技术(FEDT)。前两个维度是医疗体系数字方向的基础,而后两个维度将为未来的颠覆做好准备。

方法

我们在 2021 年 2 月至 3 月期间调查了美国各地的一组强大的医疗体系首席执行官(CEO)。在 625 位首席执行官中,有 135 位(22%)对我们的调查做出了回应。我们考虑了上述四个广泛的数字技术方向,这些方向得到了专家共识的认可。从医疗保健研究和质量机构的医院综合数据中收集了二级数据,最终分析了 124 个可用的医疗体系数据集。我们研究了采用这四个数字方向与特定医院特征和之前报道的作为技术采用障碍或促进因素的因素之间的关系。

结果

医疗体系在 CODT(平均 4.70)或 GODT(平均 4.54)方向上的取向水平较低,而在 FEDT(平均 4.31)方向上的取向水平最低。有序逻辑估计结果提供了细致的见解。中型(P<.001)、大型教学型(P<.001)和高负担医院(P<.001)的医疗体系在 AODT 方向上的表现似乎更差,这引起了一些关注。中等(P<.001)和大型(P=.02)规模、主要教学型(P=.07)、高收入(P=.05)和高负担医院(P<.001)的医疗体系在 CODT 方向上的取向较少。中西部(P=.05)和南部(P=.04)州的医疗体系更有可能采用 GODT,而高收入(P=.004)和投资者拥有(P=.01)的医疗体系则被阻止采用 GODT。中等规模的医疗体系,以及位于中西部(P<.001)、南部(P<.001)和西部(P=.01)的医疗体系,在 FEDT 方面更为熟练,而中等规模(P<.001)和高收入(P<.001)的医疗体系,以及高出院率(P=.04)或高负担(P=.003,P=.005)的医疗体系,在 FEDT 方向上的取向较弱。

结论

几乎所有的医疗体系都有一些当前的基础数字技术方向来获取情报或向客户提供服务,但也有一些明显的例外。相比之下,较少的医疗体系具有增长或未来数字方向。只有采用未来数字技术,数字技术的变革力量才能得到利用。因此,这些方向之间的差异表明,在美国仍然难以实现全面、一致和明确的方向。因此,我们建议采取一项政策战略和财政激励措施,以激发美国所有医疗体系的良好愿景和明确的数字方向。如果没有这样的政策来共同利用数字转型,那么全国各地在护理方面的差异仍将是一个问题。

相似文献

4
Digital Health Value Realization Through Active Change Efforts.
Front Public Health. 2021 Oct 12;9:741424. doi: 10.3389/fpubh.2021.741424. eCollection 2021.
7
Digitization and Health in Germany: Cross-sectional Nationwide Survey.
JMIR Public Health Surveill. 2021 Nov 22;7(11):e32951. doi: 10.2196/32951.
10
COVID-19 Digital Health Innovation Policy: A Portal to Alternative Futures in the Making.
OMICS. 2020 Aug;24(8):460-469. doi: 10.1089/omi.2020.0089. Epub 2020 Jun 8.

引用本文的文献

1
2
Telemedicine Use During the COVID-19 Pandemic by Office-based Physicians and Long-term Care Providers.
Natl Health Stat Report. 2024 Sep 18(210). doi: 10.15620/cdc/159282.
3
Telemedicine for diabetes management during COVID-19: what we have learnt, what and how to implement.
Front Endocrinol (Lausanne). 2023 May 17;14:1129793. doi: 10.3389/fendo.2023.1129793. eCollection 2023.
4
Digital Transformation in Healthcare: Technology Acceptance and Its Applications.
Int J Environ Res Public Health. 2023 Feb 15;20(4):3407. doi: 10.3390/ijerph20043407.
5
Medical Education 4.0: A Neurology Perspective.
Cureus. 2022 Nov 19;14(11):e31668. doi: 10.7759/cureus.31668. eCollection 2022 Nov.

本文引用的文献

1
How artificial intelligence and machine learning can help healthcare systems respond to COVID-19.
Mach Learn. 2021;110(1):1-14. doi: 10.1007/s10994-020-05928-x. Epub 2020 Dec 9.
2
Regional Variation in the Management and Outcomes of Acute Myocardial Infarction With Cardiogenic Shock in the United States.
Circ Heart Fail. 2020 Feb;13(2):e006661. doi: 10.1161/CIRCHEARTFAILURE.119.006661. Epub 2020 Feb 14.
4
Artificial intelligence, machine learning and health systems.
J Glob Health. 2018 Dec;8(2):020303. doi: 10.7189/jogh.08.020303.
5
Health Care Robotics: Qualitative Exploration of Key Challenges and Future Directions.
J Med Internet Res. 2018 Jul 4;20(7):e10410. doi: 10.2196/10410.
7
Electronic health record adoption in US hospitals: the emergence of a digital "advanced use" divide.
J Am Med Inform Assoc. 2017 Nov 1;24(6):1142-1148. doi: 10.1093/jamia/ocx080.
8
Comparing Hospital Mission Statement Content in a Changing Healthcare Field.
Hosp Top. 2018 Jan-Mar;96(1):28-34. doi: 10.1080/00185868.2017.1366188. Epub 2017 Sep 20.
9
The use of electronic health records for psychiatric phenotyping and genomics.
Am J Med Genet B Neuropsychiatr Genet. 2018 Oct;177(7):601-612. doi: 10.1002/ajmg.b.32548. Epub 2017 May 30.
10
Uncompensated Care Decreased At Hospitals In Medicaid Expansion States But Not At Hospitals In Nonexpansion States.
Health Aff (Millwood). 2016 Aug 1;35(8):1471-9. doi: 10.1377/hlthaff.2015.1344.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验