Suppr超能文献

重新审视盐包水电解质的纳米结构:阴离子尺寸的影响

The Nanostructure of Water-in-Salt Electrolytes Revisited: Effect of the Anion Size.

作者信息

Horwitz Gabriela, Härk Eneli, Steinberg Paula Y, Cavalcanti Leide P, Risse Sebastian, Corti Horacio R

机构信息

Departamento de Física de la Materia Condensada and Instituto de Nanociencia y Nanotecnología (INN-CONICET), Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650, San Martín, Buenos Aires, Argentina.

Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.

出版信息

ACS Nano. 2021 Jul 27;15(7):11564-11572. doi: 10.1021/acsnano.1c01737. Epub 2021 Jul 13.

Abstract

The increasing interest in developing safe and sustainable energy storage systems has led to the rapid rise in attention to superconcentrated electrolytes, commonly called water-in-salt (WiS). Several works indicate that the transport properties of these liquid electrolytes are related to the presence of nanodomains, but a detailed characterization of such structure is missing. Here, the structural nano-heterogeneity of lithium WiS electrolytes, comprising lithium trifluoromethanesulfonate (LiTf) and bis(trifluoromethanesulfonyl)imide (LiTFSI) solutions as a function of concentration and temperature, was assessed by resorting to the analysis of small-angle neutron scattering (SANS) patterns. Variations with the concentration of a correlation peak, rather temperature-independent, in a range around 3.5-5 nm indicate that these electrolytes are composed of nanometric water-rich channels percolating a 3D dispersing anion-rich network, with differences between Tf and TFSI anions related to their distinct volumes and interactions. Furthermore, a common trend was found for both systems' morphology above a salt volume fraction of ∼0.5. These results imply that the determining factor in the formation of the nanostructure is the salt volume fraction (related to the anion size), rather than its molality. These findings may represent a paradigm shift for designing WiS electrolytes.

摘要

对开发安全且可持续的储能系统的兴趣日益浓厚,这导致对超浓缩电解质(通常称为盐包水(WiS))的关注度迅速上升。多项研究表明,这些液体电解质的传输特性与纳米域的存在有关,但此类结构的详细表征尚付阙如。在此,通过对小角中子散射(SANS)图案进行分析,评估了由三氟甲磺酸锂(LiTf)和双(三氟甲磺酰)亚胺锂(LiTFSI)溶液组成的锂WiS电解质在浓度和温度作用下的结构纳米非均质性。在3.5 - 5纳米左右的范围内,一个与温度无关、随浓度变化的相关峰表明,这些电解质由渗透三维富阴离子分散网络的纳米级富水通道组成,Tf和TFSI阴离子之间的差异与其不同的体积和相互作用有关。此外,在盐体积分数约为0.5以上时,发现这两种体系的形态存在共同趋势。这些结果表明,纳米结构形成的决定性因素是盐体积分数(与阴离子大小有关),而非其质量摩尔浓度。这些发现可能代表了设计WiS电解质的范式转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验