NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States.
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.
Environ Sci Technol. 2021 Aug 3;55(15):10280-10290. doi: 10.1021/acs.est.1c01963. Epub 2021 Jul 13.
Understanding the efficiency and variability of photochemical ozone (O) production from western wildfire plumes is important to accurately estimate their influence on North American air quality. A set of photochemical measurements were made from the NOAA Twin Otter research aircraft as a part of the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment. We use a zero-dimensional (0-D) box model to investigate the chemistry driving O production in modeled plumes. Modeled afternoon plumes reached a maximum O mixing ratio of 140 ± 50 ppbv (average ± standard deviation) within 20 ± 10 min of emission compared to 76 ± 12 ppbv in 60 ± 30 min in evening plumes. Afternoon and evening maximum O isopleths indicate that plumes were near their peak in NO efficiency. A radical budget describes the NO volatile - organic compound (VOC) sensitivities of these plumes. Afternoon plumes displayed a rapid transition from VOC-sensitive to NO-sensitive chemistry, driven by HO (=OH + HO) production from photolysis of nitrous acid (HONO) (48 ± 20% of primary HO) and formaldehyde (HCHO) (26 ± 9%) emitted directly from the fire. Evening plumes exhibit a slower transition from peak NO efficiency to VOC-sensitive O production caused by a reduction in photolysis rates and fire emissions. HO production in evening plumes is controlled by HONO photolysis (53 ± 7%), HCHO photolysis (18 ± 9%), and alkene ozonolysis (17 ± 9%).
了解来自西部野火羽流的光化学臭氧 (O) 生成效率和变异性对于准确估计它们对北美的空气质量影响非常重要。作为 Fire Influence on Regional to Global Environments and Air Quality(FIREX-AQ)实验的一部分,NOAA 双水獭研究飞机进行了一系列光化学测量。我们使用零维(0-D)箱模型来研究模型羽流中驱动 O 生成的化学过程。与傍晚羽流在 60 ± 30 分钟内达到 76 ± 12 ppbv 的最大 O 混合比相比,下午羽流在排放后 20 ± 10 分钟内达到了 140 ± 50 ppbv 的最大 O 混合比。下午和傍晚的最大 O 等浓度线表明羽流在 NO 效率方面接近峰值。自由基预算描述了这些羽流的 NO 挥发性有机化合物(VOC)敏感性。下午羽流显示出从 VOC 敏感性到 NO 敏感性化学的快速转变,这是由亚硝酸(HONO)光解(48 ± 20%的初始 HO)和直接从火灾排放的甲醛(HCHO)(26 ± 9%)产生的 HO 引起的。傍晚羽流从峰值 NO 效率向 VOC 敏感性 O 生成的缓慢转变是由于光解速率和火灾排放的减少引起的。傍晚羽流中的 HO 生成受 HONO 光解(53 ± 7%)、HCHO 光解(18 ± 9%)和烯烃臭氧化(17 ± 9%)控制。