Xu Lu, Crounse John D, Vasquez Krystal T, Allen Hannah, Wennberg Paul O, Bourgeois Ilann, Brown Steven S, Campuzano-Jost Pedro, Coggon Matthew M, Crawford James H, DiGangi Joshua P, Diskin Glenn S, Fried Alan, Gargulinski Emily M, Gilman Jessica B, Gkatzelis Georgios I, Guo Hongyu, Hair Johnathan W, Hall Samuel R, Halliday Hannah A, Hanisco Thomas F, Hannun Reem A, Holmes Christopher D, Huey L Gregory, Jimenez Jose L, Lamplugh Aaron, Lee Young Ro, Liao Jin, Lindaas Jakob, Neuman J Andrew, Nowak John B, Peischl Jeff, Peterson David A, Piel Felix, Richter Dirk, Rickly Pamela S, Robinson Michael A, Rollins Andrew W, Ryerson Thomas B, Sekimoto Kanako, Selimovic Vanessa, Shingler Taylor, Soja Amber J, St Clair Jason M, Tanner David J, Ullmann Kirk, Veres Patrick R, Walega James, Warneke Carsten, Washenfelder Rebecca A, Weibring Petter, Wisthaler Armin, Wolfe Glenn M, Womack Caroline C, Yokelson Robert J
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
Sci Adv. 2021 Dec 10;7(50):eabl3648. doi: 10.1126/sciadv.abl3648. Epub 2021 Dec 8.
Wildfires are a substantial but poorly quantified source of tropospheric ozone (O). Here, to investigate the highly variable O chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O formation substantially slows and is largely limited by the abundance of nitrogen oxides (NO). This finding supports previous observations that O formation is enhanced when VOC-rich wildfire smoke mixes into NO-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.
野火是对流层臭氧(O)的一个重要但量化不足的来源。在此,为了研究野火羽流中高度可变的臭氧化学,我们利用了FIREX-AQ飞行活动期间对西部野火的现场化学特征分析,并表明臭氧生成可以作为实验约束的羟基(OH)暴露量、挥发性有机化合物(VOC)反应活性以及过氧自由基命运的函数来预测。臭氧化学在化学状态上表现出快速转变。在几个白天时间内,臭氧形成显著减缓,并且在很大程度上受到氮氧化物(NO)丰度的限制。这一发现支持了先前的观察结果,即当富含挥发性有机化合物的野火烟雾混入富含氮氧化物的城市羽流中时,臭氧形成会增强,从而恶化城市空气质量。最后,我们将臭氧化学与潜在的火灾特征联系起来,从而能够在用于研究空气质量和预测气候的大气模型中更准确地呈现野火化学。