Suppr超能文献

使用卷积神经网络检测颈椎 CT 骨折。

CT Cervical Spine Fracture Detection Using a Convolutional Neural Network.

机构信息

From the Departments of Neuroradiology (J.E.S., A.B.P., M.K.)

Radiology (P.O), Lahey Hospital and Medical Center, Burlington, Massachusetts.

出版信息

AJNR Am J Neuroradiol. 2021 Jul;42(7):1341-1347. doi: 10.3174/ajnr.A7094. Epub 2021 Apr 1.

Abstract

BACKGROUND AND PURPOSE

Multidetector CT has emerged as the standard of care imaging technique to evaluate cervical spine trauma. Our aim was to evaluate the performance of a convolutional neural network in the detection of cervical spine fractures on CT.

MATERIALS AND METHODS

We evaluated C-spine, an FDA-approved convolutional neural network developed by Aidoc to detect cervical spine fractures on CT. A total of 665 examinations were included in our analysis. Ground truth was established by retrospective visualization of a fracture on CT by using all available CT, MR imaging, and convolutional neural network output information. The ĸ coefficients, sensitivity, specificity, and positive and negative predictive values were calculated with 95% CIs comparing diagnostic accuracy and agreement of the convolutional neural network and radiologist ratings, respectively, compared with ground truth.

RESULTS

Convolutional neural network accuracy in cervical spine fracture detection was 92% (95% CI, 90%-94%), with 76% (95% CI, 68%-83%) sensitivity and 97% (95% CI, 95%-98%) specificity. The radiologist accuracy was 95% (95% CI, 94%-97%), with 93% (95% CI, 88%-97%) sensitivity and 96% (95% CI, 94%-98%) specificity. Fractures missed by the convolutional neural network and by radiologists were similar by level and location and included fractured anterior osteophytes, transverse processes, and spinous processes, as well as lower cervical spine fractures that are often obscured by CT beam attenuation.

CONCLUSIONS

The convolutional neural network holds promise at both worklist prioritization and assisting radiologists in cervical spine fracture detection on CT. Understanding the strengths and weaknesses of the convolutional neural network is essential before its successful incorporation into clinical practice. Further refinements in sensitivity will improve convolutional neural network diagnostic utility.

摘要

背景与目的

多排 CT 已成为评估颈椎创伤的标准影像学检查方法。我们旨在评估卷积神经网络在 CT 检测颈椎骨折方面的性能。

材料与方法

我们评估了 C-spine,这是由 Aidoc 开发的经 FDA 批准的卷积神经网络,用于在 CT 上检测颈椎骨折。我们的分析共纳入 665 例检查。通过使用所有可用的 CT、MR 成像和卷积神经网络输出信息,对骨折进行回顾性可视化,从而确定骨折的真实情况。使用 95%置信区间(CI)分别计算ĸ系数、敏感性、特异性、阳性和阴性预测值,以比较卷积神经网络和放射科医生的诊断准确性和一致性,以及与真实情况的一致性。

结果

卷积神经网络在颈椎骨折检测中的准确率为 92%(95%CI,90%-94%),敏感性为 76%(95%CI,68%-83%),特异性为 97%(95%CI,95%-98%)。放射科医生的准确率为 95%(95%CI,94%-97%),敏感性为 93%(95%CI,88%-97%),特异性为 96%(95%CI,94%-98%)。卷积神经网络和放射科医生遗漏的骨折在水平和位置上相似,包括骨折的前骨赘、横突和棘突,以及因 CT 束衰减而常被掩盖的下颈椎骨折。

结论

卷积神经网络在 CT 颈椎骨折检测的工作列表优先级设置和辅助放射科医生方面具有应用前景。在成功将其纳入临床实践之前,了解卷积神经网络的优势和劣势至关重要。进一步提高敏感性将提高卷积神经网络的诊断效用。

相似文献

1
CT Cervical Spine Fracture Detection Using a Convolutional Neural Network.
AJNR Am J Neuroradiol. 2021 Jul;42(7):1341-1347. doi: 10.3174/ajnr.A7094. Epub 2021 Apr 1.
2
Diagnostic accuracy of an artificial intelligence algorithm versus radiologists for fracture detection on cervical spine CT.
Eur Radiol. 2024 Aug;34(8):5041-5048. doi: 10.1007/s00330-023-10559-6. Epub 2024 Jan 11.
3
Cervical spine fracture detection in computed tomography using convolutional neural networks.
Phys Med Biol. 2023 May 29;68(11). doi: 10.1088/1361-6560/acd48b.
4
Towards clinical implementation of an AI-algorithm for detection of cervical spine fractures on computed tomography.
Eur J Radiol. 2024 Apr;173:111375. doi: 10.1016/j.ejrad.2024.111375. Epub 2024 Feb 16.
5
Cervical Spine CT Can Miss Fractures in American Football Players When Protective Equipment is in Place: A Cadaver Study.
Clin Orthop Relat Res. 2021 Sep 1;479(9):2072-2080. doi: 10.1097/CORR.0000000000001816.
6
Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures.
AJNR Am J Neuroradiol. 2021 Aug;42(8):1550-1556. doi: 10.3174/ajnr.A7179. Epub 2021 Jun 11.
7
Automated detection and classification of acute vertebral body fractures using a convolutional neural network on computed tomography.
Front Endocrinol (Lausanne). 2023 Mar 27;14:1132725. doi: 10.3389/fendo.2023.1132725. eCollection 2023.
9
Traumatic cervical spine fracture patterns on CT: a retrospective analysis at a level 1 trauma center.
Emerg Radiol. 2021 Oct;28(5):965-976. doi: 10.1007/s10140-021-01952-z. Epub 2021 Jun 11.

引用本文的文献

4
Artificial Intelligence for Cervical Spine Fracture Detection: A Systematic Review of Diagnostic Performance and Clinical Potential.
Global Spine J. 2025 May;15(4):2547-2558. doi: 10.1177/21925682251314379. Epub 2025 Jan 12.
5
Artificial Intelligence Detection of Cervical Spine Fractures Using Convolutional Neural Network Models.
Neurospine. 2024 Sep;21(3):833-841. doi: 10.14245/ns.2448580.290. Epub 2024 Sep 30.
7
Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade.
Skeletal Radiol. 2024 Sep;53(9):1849-1868. doi: 10.1007/s00256-024-04684-6. Epub 2024 Jun 20.
8
An Automated Multi-scale Feature Fusion Network for Spine Fracture Segmentation Using Computed Tomography Images.
J Imaging Inform Med. 2024 Oct;37(5):2216-2226. doi: 10.1007/s10278-024-01091-0. Epub 2024 Apr 15.

本文引用的文献

2
Incidence of cervical spine fractures on CT: a study in a large level I trauma center.
Emerg Radiol. 2020 Feb;27(1):1-8. doi: 10.1007/s10140-019-01717-9. Epub 2019 Aug 28.
3
Imaging of cervical spine traumas.
Eur J Radiol. 2019 Aug;117:75-88. doi: 10.1016/j.ejrad.2019.05.007. Epub 2019 May 7.
4
Imaging of Spine Trauma.
Radiol Clin North Am. 2019 Jul;57(4):767-785. doi: 10.1016/j.rcl.2019.02.007. Epub 2019 Apr 6.
6
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs.
Eur Radiol. 2019 Oct;29(10):5469-5477. doi: 10.1007/s00330-019-06167-y. Epub 2019 Apr 1.
7
Spectrum of diagnostic errors in cervical spine trauma imaging and their clinical significance.
Emerg Radiol. 2019 Aug;26(4):409-416. doi: 10.1007/s10140-019-01685-0. Epub 2019 Mar 31.
8
Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images.
Comput Methods Programs Biomed. 2019 Apr;171:27-37. doi: 10.1016/j.cmpb.2019.02.006. Epub 2019 Feb 12.
10
Computer vs human: Deep learning versus perceptual training for the detection of neck of femur fractures.
J Med Imaging Radiat Oncol. 2019 Feb;63(1):27-32. doi: 10.1111/1754-9485.12828. Epub 2018 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验