Suppr超能文献

评估一级创伤中心 2022 年 RSNA 颈椎骨折检测竞赛模型的性能。

Assessing the Performance of Models from the 2022 RSNA Cervical Spine Fracture Detection Competition at a Level I Trauma Center.

机构信息

From the Edward S. Rogers Department of Electrical and Computer Engineering (Z.H., W.L., E.S.), Department of Medical Imaging, Faculty of Medicine (M.P., S.M., R.M., E.C.), Faculty of Medicine (M.N., J.W., C.W.), and Division of Neurosurgery, Department of Surgery (J.W., C.W.), University of Toronto, 40 St George St, Toronto, ON, Canada M5S 3G4; Department of Medical Imaging (H.M.L., M.N., S.M., R.M., E.C.) and Li Ka Shing Knowledge Institute (S.M., J.W., C.W., E.C.), St Michael's Hospital, Unity Health Toronto, Toronto, Canada; The Jackson Laboratory, Bar Harbor, Maine (R.L.B.); Standard School of Medicine, Stanford University, Stanford, Calif (K.W.Y.); H2O.ai, Mountain View, Calif (Q.H., P.S., P.P.); School of Computer Science, University of Birmingham, Birmingham, UK (H.C.); DoubleYard, Edulab Group, Boston, Ireland (D.H.); Mapbox, London, UK (S.S.); NVIDIA, Santa Clara, Calif (C.H.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (I.P.); University of London, Goldsmiths, London, UK (H.S.); Department of Radiology, The Ohio State University, Columbus, Ohio (L.M.P.); Department of Radiology, Division of Neuroradiology, Thomas Jefferson University, Philadelphia, Pa (A.E.F.); Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil (F.C.K.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (J.T.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (T.R.); and North York General Hospital, Toronto, Canada (E.S.).

出版信息

Radiol Artif Intell. 2024 Nov;6(6):e230550. doi: 10.1148/ryai.230550.

Abstract

Purpose To evaluate the performance of the top models from the RSNA 2022 Cervical Spine Fracture Detection challenge on a clinical test dataset of both noncontrast and contrast-enhanced CT scans acquired at a level I trauma center. Materials and Methods Seven top-performing models in the RSNA 2022 Cervical Spine Fracture Detection challenge were retrospectively evaluated on a clinical test set of 1828 CT scans (from 1829 series: 130 positive for fracture, 1699 negative for fracture; 1308 noncontrast, 521 contrast enhanced) from 1779 patients (mean age, 55.8 years ± 22.1 [SD]; 1154 [64.9%] male patients). Scans were acquired without exclusion criteria over 1 year (January-December 2022) from the emergency department of a neurosurgical and level I trauma center. Model performance was assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. False-positive and false-negative cases were further analyzed by a neuroradiologist. Results Although all seven models showed decreased performance on the clinical test set compared with the challenge dataset, the models maintained high performances. On noncontrast CT scans, the models achieved a mean AUC of 0.89 (range: 0.79-0.92), sensitivity of 67.0% (range: 30.9%-80.0%), and specificity of 92.9% (range: 82.1%-99.0%). On contrast-enhanced CT scans, the models had a mean AUC of 0.88 (range: 0.76-0.94), sensitivity of 81.9% (range: 42.7%-100.0%), and specificity of 72.1% (range: 16.4%-92.8%). The models identified 10 fractures missed by radiologists. False-positive cases were more common in contrast-enhanced scans and observed in patients with degenerative changes on noncontrast scans, while false-negative cases were often associated with degenerative changes and osteopenia. Conclusion The winning models from the 2022 RSNA AI Challenge demonstrated a high performance for cervical spine fracture detection on a clinical test dataset, warranting further evaluation for their use as clinical support tools. Feature Detection, Supervised Learning, Convolutional Neural Network (CNN), Genetic Algorithms, CT, Spine, Technology Assessment, Head/Neck © RSNA, 2024 See also commentary by Levi and Politi in this issue.

摘要

目的 评估在一级创伤中心采集的非增强和增强 CT 扫描的临床测试数据集上,来自 RSNA 2022 颈椎骨折检测挑战赛的顶级模型的表现。

材料与方法 对 RSNA 2022 颈椎骨折检测挑战赛中的 7 个表现最佳的模型进行回顾性评估,这些模型应用于 1828 个 CT 扫描的临床测试集(来自 1829 个系列:130 个骨折阳性,1699 个骨折阴性;1308 个非增强,521 个增强),这些 CT 扫描来自 1779 名患者(平均年龄 55.8 岁±22.1[标准差];1154 名[64.9%]男性患者)。这些扫描是在 1 年内(2022 年 1 月至 12 月)从神经外科和一级创伤中心的急诊部门采集的,没有排除标准。模型性能使用接收器操作特征曲线下面积(AUC)、敏感性和特异性进行评估。假阳性和假阴性病例由神经放射科医生进一步分析。

结果 尽管所有 7 个模型在临床测试集上的表现都低于挑战赛数据集,但模型仍保持了较高的性能。在非增强 CT 扫描上,模型的平均 AUC 为 0.89(范围:0.79-0.92),敏感性为 67.0%(范围:30.9%-80.0%),特异性为 92.9%(范围:82.1%-99.0%)。在增强 CT 扫描上,模型的平均 AUC 为 0.88(范围:0.76-0.94),敏感性为 81.9%(范围:42.7%-100.0%),特异性为 72.1%(范围:16.4%-92.8%)。模型识别出了放射科医生遗漏的 10 处骨折。假阳性病例在增强扫描中更为常见,在非增强扫描中观察到退行性改变的患者中可见,而假阴性病例通常与退行性改变和骨质疏松症有关。

结论 在 2022 年 RSNA AI 挑战赛中获奖的模型在临床测试数据集上对颈椎骨折检测表现出了较高的性能,有必要进一步评估其作为临床支持工具的使用价值。

特征检测、有监督学习、卷积神经网络(CNN)、遗传算法、CT、脊柱、技术评估、头/颈

(RSNA,2024 年) 另见本期 Levi 和 Politi 的评论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94df/11605142/bff5c9d3530d/ryai.230550.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验