Suppr超能文献

一种基于深度学习的有效方法,用于自动识别颈椎骨折以辅助临床诊断。

An efficient deep learning based approach for automated identification of cervical vertebrae fracture as a clinical support aid.

作者信息

Singh Maninder, Tripathi Umang, Patel Kunvar Kant, Mohit Kumar, Pathak Shashwat

机构信息

Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune, 412115, India.

Electronics & Communication Engineering Department, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India.

出版信息

Sci Rep. 2025 Jul 15;15(1):25651. doi: 10.1038/s41598-025-10448-6.

Abstract

Cervical vertebrae fractures pose a significant risk to a patient's health. The accurate diagnosis and prompt treatment need to be provided for effective treatment. Moreover, the automated analysis of the cervical vertebrae fracture is of utmost important, as deep learning models have been widely used and play significant role in identification and classification. In this paper, we propose a novel hybrid transfer learning approach for the identification and classification of fractures in axial CT scan slices of the cervical spine. We utilize the publicly available RSNA (Radiological Society of North America) dataset of annotated cervical vertebrae fractures for our experiments. The CT scan slices undergo preprocessing and analysis to extract features, employing four distinct pre-trained transfer learning models to detect abnormalities in the cervical vertebrae. The top-performing model, Inception-ResNet-v2, is combined with the upsampling component of U-Net to form a hybrid architecture. The hybrid model demonstrates superior performance over traditional deep learning models, achieving an overall accuracy of 98.44% on 2,984 test CT scan slices, which represents a 3.62% improvement over the 95% accuracy of predictions made by radiologists. This study advances clinical decision support systems, equipping medical professionals with a powerful tool for timely intervention and accurate diagnosis of cervical vertebrae fractures, thereby enhancing patient outcomes and healthcare efficiency.

摘要

颈椎骨折对患者的健康构成重大风险。为了进行有效治疗,需要提供准确的诊断和及时的治疗。此外,颈椎骨折的自动分析至关重要,因为深度学习模型已被广泛使用并在识别和分类中发挥重要作用。在本文中,我们提出了一种新颖的混合迁移学习方法,用于识别和分类颈椎轴向CT扫描切片中的骨折。我们利用公开可用的北美放射学会(RSNA)标注的颈椎骨折数据集进行实验。对CT扫描切片进行预处理和分析以提取特征,采用四种不同的预训练迁移学习模型来检测颈椎中的异常。表现最佳的模型Inception-ResNet-v2与U-Net的上采样组件相结合,形成一种混合架构。该混合模型展示出优于传统深度学习模型的性能,在2984张测试CT扫描切片上实现了98.44%的总体准确率,比放射科医生95%的预测准确率提高了3.62%。这项研究推动了临床决策支持系统的发展,为医学专业人员提供了一个强大的工具,用于及时干预和准确诊断颈椎骨折,从而改善患者预后并提高医疗效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7f8/12263901/5379636b076f/41598_2025_10448_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验