Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; email:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Annu Rev Biomed Eng. 2021 Jul 13;23:307-338. doi: 10.1146/annurev-bioeng-082020-032402.
Additive manufacturing's attributes include print customization, low per-unit cost for small- to mid-batch production, seamless interfacing with mainstream medical 3D imaging techniques, and feasibility to create free-form objects in materials that are biocompatible and biodegradable. Consequently, additive manufacturing is apposite for a wide range of biomedical applications including custom biocompatible implants that mimic the mechanical response of bone, biodegradable scaffolds with engineered degradation rate, medical surgical tools, and biomedical instrumentation. This review surveys the materials, 3D printing methods and technologies, and biomedical applications of metal 3D printing, providing a historical perspective while focusing on the state of the art. It then identifies a number of exciting directions of future growth: () the improvement of mainstream additive manufacturing methods and associated feedstock; () the exploration of mature, less utilized metal 3D printing techniques; () the optimization of additively manufactured load-bearing structures via artificial intelligence; and () the creation of monolithic, multimaterial, finely featured, multifunctional implants.
增材制造的特点包括打印定制、小批量到中批量生产的单位成本低、与主流医学 3D 成像技术无缝对接,以及在生物相容性和可生物降解材料中创建自由形态物体的可行性。因此,增材制造非常适合广泛的生物医学应用,包括模仿骨骼机械响应的定制生物相容性植入物、具有工程降解率的可生物降解支架、医疗手术工具和生物医学仪器。本综述调查了金属 3D 打印的材料、3D 打印方法和技术以及生物医学应用,提供了历史视角,同时侧重于最新技术。然后确定了一些令人兴奋的未来增长方向:()主流增材制造方法和相关原料的改进;()成熟、使用较少的金属 3D 打印技术的探索;()通过人工智能优化增材制造承重结构;以及()整体式、多材料、精细特征、多功能植入物的创建。