Suppr超能文献

用于评估邻苯二甲酸酯及其替代品的人群风险的综合暴露和药代动力学建模框架。

An integrated exposure and pharmacokinetic modeling framework for assessing population-scale risks of phthalates and their substitutes.

机构信息

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

Department of Building Science and Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.

出版信息

Environ Int. 2021 Nov;156:106748. doi: 10.1016/j.envint.2021.106748. Epub 2021 Jul 10.

Abstract

To effectively incorporate in vitro-in silico-based methods into the regulation of consumer product safety, a quantitative connection between product phthalate concentrations and in vitro bioactivity data must be established for the general population. We developed, evaluated, and demonstrated a modeling framework that integrates exposure and pharmacokinetic models to convert product phthalate concentrations into population-scale risks for phthalates and their substitutes. A probabilistic exposure model was developed to generate the distribution of multi-route exposures based on product phthalate concentrations, chemical properties, and human activities. Pharmacokinetic models were developed to simulate population toxicokinetics using Bayesian analysis via the Markov chain Monte Carlo method. Both exposure and pharmacokinetic models demonstrated good predictive capability when compared with worldwide studies. The distributions of exposures and pharmacokinetics were integrated to predict the population distributions of internal dosimetry. The predicted distributions showed reasonable agreement with the U.S. biomonitoring surveys of urinary metabolites. The "source-to-outcome" local sensitivity analysis revealed that food contact materials had the greatest impact on body burden for di(2-ethylhexyl) adipate (DEHA), di-2-ethylhexyl phthalate (DEHP), di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), and di(2-propylheptyl) phthalate (DPHP), whereas the body burden of diethyl phthalate (DEP) was most sensitive to the concentration in personal care products. The upper bounds of predicted plasma concentrations showed no overlap with ToxCast in vitro bioactivity values. Compared with the in vitro-to-in vivo extrapolation (IVIVE) approach, the integrated modeling framework has significant advantages in mapping product phthalate concentrations to multi-route risks, and thus is of great significance for regulatory use with a relatively low input requirement. Further integration with new approach methodologies will facilitate these in vitro-in silico-based risk assessments for a broad range of products containing an equally broad range of chemicals.

摘要

为了有效将基于体外-计算的方法纳入消费品安全监管,必须为普通人群建立产品中邻苯二甲酸酯浓度与体外生物活性数据之间的定量关系。我们开发、评估并演示了一个建模框架,该框架将暴露和药代动力学模型集成在一起,将产品中邻苯二甲酸酯浓度转化为人群规模的邻苯二甲酸酯及其替代品风险。开发了一个概率暴露模型,根据产品中邻苯二甲酸酯浓度、化学特性和人类活动,生成多途径暴露的分布。药代动力学模型用于通过贝叶斯分析(通过马尔可夫链蒙特卡罗方法)模拟人群毒代动力学。暴露和药代动力学模型在与全球研究相比时均显示出良好的预测能力。将暴露和药代动力学分布进行整合,以预测内部剂量学的人群分布。预测分布与美国生物监测尿液代谢物调查结果具有合理的一致性。“源至结果”局部敏感性分析表明,食品接触材料对邻苯二甲酸二(2-乙基己基)酯(DEHA)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二(异壬基)环己烷-1,2-二羧酸酯(DINCH)和邻苯二甲酸二(2-丙基庚基)酯(DPHP)的体内负荷影响最大,而邻苯二甲酸二乙酯(DEP)的体内负荷对个人护理产品中的浓度最敏感。预测的血浆浓度上限与 ToxCast 体外生物活性值没有重叠。与体外至体内外推(IVIVE)方法相比,综合建模框架在将产品中邻苯二甲酸酯浓度映射到多途径风险方面具有显著优势,因此对于具有相对较低输入要求的监管用途具有重要意义。与新方法的进一步整合将促进这些基于体外-计算的风险评估,涵盖广泛的产品,其中包含同样广泛的化学物质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验