文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁纳米颗粒和静磁场对骨髓间充质干细胞的刺激:外泌体 miR-1260a 的释放可改善成骨和血管生成。

Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis.

机构信息

Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.

Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.

出版信息

J Nanobiotechnology. 2021 Jul 13;19(1):209. doi: 10.1186/s12951-021-00958-6.


DOI:10.1186/s12951-021-00958-6
PMID:34256779
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8278669/
Abstract

BACKGROUND: The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. FeO, γ-FeO) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of FeO nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved. METHODS: Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro. RESULTS: 50 µg/mL FeO nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-FeO-Exos and BMSC-FeO-SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-FeO-SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-FeO-SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively. CONCLUSION: These results suggest that low doses of FeO nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future.

摘要

背景:最近,干细胞衍生的外泌体的治疗潜力引起了越来越多的关注,因为它们可以发挥类似的干细胞旁分泌功能,并克服干细胞移植的局限性。骨髓间充质干细胞(BMSC)衍生的外泌体(BMSC-Exos)已被证实可促进成骨和血管生成。结合静磁场(SMF)的磁性纳米颗粒(如 FeO、γ-FeO)已被广泛用于增加伤口愈合和骨再生。因此,本研究旨在评估低剂量 FeO 纳米颗粒预处理的 BMSC 衍生的外泌体,在骨再生中是否具有优越的促成骨和成血管活性,以及涉及的潜在机制。

方法:通过调节磁性纳米颗粒和/或 SMF 的刺激来控制内容物,从而构建两种新型的外泌体。然后,通过超速离心分离新的外泌体并进行鉴定。接下来,我们进行了体外实验,测量成骨分化、细胞增殖、细胞迁移和管形成,然后建立了一个体内临界尺寸颅骨缺损大鼠模型。比较外泌体中的 miRNA 表达谱,以检测改善成骨和血管生成的潜在机制。最后,通过一系列体外的增益和损耗功能实验,确认了外泌体 miRNA 在骨再生过程中的作用。

结果:选择 50μg/mL FeO 纳米颗粒和 100 mT SMF 作为最佳磁性条件来制备两种新型外泌体,分别命名为 BMSC-FeO-Exos 和 BMSC-FeO-SMF-Exos。与 BMSC-Exos 相比,它们均能增强体外和体内的成骨和血管生成,而 BMSC-FeO-SMF-Exos 的效果最为显著。促进作用与 BMSC-FeO-SMF-Exos 中高度丰富的 miR-1260a 有关。此外,miR-1260a 通过抑制 HDAC7 和 COL4A2 分别被证实增强成骨和血管生成。

结论:这些结果表明,低剂量的 FeO 纳米颗粒与 SMF 结合触发外泌体发挥增强的成骨和血管生成作用,外泌体 miR-1260a 靶向 HDAC7 和 COL4A2 在此过程中发挥关键作用。这项工作为未来组织工程中促进骨再生提供了一种新的方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/b956eb0aad6a/12951_2021_958_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/d066ad94c389/12951_2021_958_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/be4e035ddd65/12951_2021_958_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/c1f8ca4297fa/12951_2021_958_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/d9c32e63b9bd/12951_2021_958_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/8c010df78cc3/12951_2021_958_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/6dc55cc4d74d/12951_2021_958_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/d36b651c8b9b/12951_2021_958_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/6ca66f0470f1/12951_2021_958_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/b956eb0aad6a/12951_2021_958_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/d066ad94c389/12951_2021_958_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/be4e035ddd65/12951_2021_958_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/c1f8ca4297fa/12951_2021_958_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/d9c32e63b9bd/12951_2021_958_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/8c010df78cc3/12951_2021_958_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/6dc55cc4d74d/12951_2021_958_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/d36b651c8b9b/12951_2021_958_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/6ca66f0470f1/12951_2021_958_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468b/8278669/b956eb0aad6a/12951_2021_958_Fig9_HTML.jpg

相似文献

[1]
Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis.

J Nanobiotechnology. 2021-7-13

[2]
Exosomes Derived from Bone Mesenchymal Stem Cells with the Stimulation of FeO Nanoparticles and Static Magnetic Field Enhance Wound Healing Through Upregulated miR-21-5p.

Int J Nanomedicine. 2020-10-19

[3]
Impaired Bone Regenerative Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells in Type 1 Diabetes.

Stem Cells Transl Med. 2019-2-26

[4]
Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit.

Cell Biol Int. 2017-12

[5]
Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126.

Acta Biomater. 2020-2

[6]
Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis.

Stem Cell Res Ther. 2019-1-11

[7]
Exosomes derived from bone marrow mesenchymal stem cell preconditioned by low-intensity pulsed ultrasound stimulation promote bone-tendon interface fibrocartilage regeneration and ameliorate rotator cuff fatty infiltration.

J Orthop Translat. 2024-8-2

[8]
Hypoxic Bone Mesenchymal Stem Cell-Derived Exosomes Direct Schwann Cells Proliferation, Migration, and Paracrine to Accelerate Facial Nerve Regeneration via circRNA_Nkd2/miR-214-3p/MED19 Axis.

Int J Nanomedicine. 2024

[9]
Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway.

Stem Cell Res Ther. 2020-8-12

[10]
A novel approach in biomedical engineering: The use of polyvinyl alcohol hydrogel encapsulating human umbilical cord mesenchymal stem cell-derived exosomes for enhanced osteogenic differentiation and angiogenesis in bone regeneration.

Int J Biol Macromol. 2024-6

引用本文的文献

[1]
Categories, applications, and potential of stem cells in bone regeneration: an overview.

Front Med (Lausanne). 2025-8-20

[2]
Low-Intensity pulsed ultrasound enhances paracrine secretion of IGF and VEGF by bmscs, promoting osteogenesis and angiogenesis.

BMC Musculoskelet Disord. 2025-9-1

[3]
Mesenchymal stem cells: A new strategy for the treatment of femoral head necrosis.

Regen Ther. 2025-7-23

[4]
Acousto-Electric Conversion Fiber Networks via Regional Activation of Schwann Cell-Derived Exosomes for Neurogenic Bone Regeneration.

Research (Wash D C). 2025-7-15

[5]
Stem cell-derived exosomes: a potential therapeutic strategy for enhancing tendon stem/progenitor cells function in tendon-bone healing.

J Orthop Surg Res. 2025-7-15

[6]
Piezoelectric-IL-4 programmed regulation of immuno-microenvironment-induced mesenchymal stem cell recruitment and differentiation for bone regeneration.

Ultrason Sonochem. 2025-6-13

[7]
GelMA hydrogel-loaded extracellular vesicles derived from keratinocytes promote skin microvasculature regeneration and wound healing in diabetic mice through activation of the PDGF-induced PI3K/AKT pathway.

Cell Biol Toxicol. 2025-6-14

[8]
Engineering 3D-BMSC exosome-based hydrogels that collaboratively regulate bone microenvironment and promote osteogenesis for enhanced cell-free bone regeneration.

Mater Today Bio. 2025-5-20

[9]
Dual-functional biomimetic periosteum incorporating engineered small extracellular vesicles for treating critical bone defect with soft tissue fenestration via TGF-beta1/SMAD pathway.

Mater Today Bio. 2025-5-20

[10]
Advancement in smart bone implants: the latest multifunctional strategies and synergistic mechanisms for tissue repair and regeneration.

Bioact Mater. 2025-5-19

本文引用的文献

[1]
Differentiation of bMSCs on Biocompatible, Biodegradable, and Biomimetic Scaffolds for Largely Defected Tissue Repair.

ACS Appl Bio Mater. 2020-1-21

[2]
Ca-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis.

Bioact Mater. 2021-4-20

[3]
Bone marrow stromal cells stimulated by strontium-substituted calcium silicate ceramics: release of exosomal miR-146a regulates osteogenesis and angiogenesis.

Acta Biomater. 2021-1-1

[4]
Exosomes Derived from Bone Mesenchymal Stem Cells with the Stimulation of FeO Nanoparticles and Static Magnetic Field Enhance Wound Healing Through Upregulated miR-21-5p.

Int J Nanomedicine. 2020-10-19

[5]
In Situ Generation of Hydroxyapatite on Biopolymer Particles for Fabrication of Bone Scaffolds Owning Bioactivity.

ACS Appl Mater Interfaces. 2020-10-14

[6]
The combination of a poly-caprolactone/nano-hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects.

J Tissue Eng Regen Med. 2020-11

[7]
Mesenchymal stem cell exosomes in bone regenerative strategies-a systematic review of preclinical studies.

Mater Today Bio. 2020-6-27

[8]
A Magnetic Iron Oxide/Polydopamine Coating Can Improve Osteogenesis of 3D-Printed Porous Titanium Scaffolds with a Static Magnetic Field by Upregulating the TGFβ-Smads Pathway.

Adv Healthc Mater. 2020-7

[9]
Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair.

Sci Adv. 2020-5

[10]
Dysregulated miRNA in a cancer-prone environment: A study of gastric non-neoplastic mucosa.

Sci Rep. 2020-4-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索