Suppr超能文献

使用开源软件对非小细胞肺癌进行自动化程序性死亡配体1(PD-L1)评分

Automated PD-L1 Scoring for Non-Small Cell Lung Carcinoma Using Open-Source Software.

作者信息

Naso Julia R, Povshedna Tetiana, Wang Gang, Banyi Norbert, MacAulay Calum, Ionescu Diana N, Zhou Chen

机构信息

Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.

Department of Pathology, BC Cancer, Vancouver, BC, Canada.

出版信息

Pathol Oncol Res. 2021 Mar 26;27:609717. doi: 10.3389/pore.2021.609717. eCollection 2021.

Abstract

PD-L1 expression in non-small cell lung cancer (NSCLC) is predictive of response to immunotherapy, but scoring of PD-L1 immunohistochemistry shows considerable interobserver variability. Automated methods may allow more consistent and expedient PD-L1 scoring. We aimed to assess the technical concordance of PD-L1 scores produced using free open source QuPath software with the manual scores of three pathologists. A classifier for PD-L1 scoring was trained using 30 NSCLC image patches. A separate test set of 207 image patches from 69 NSCLC resection cases was used for comparison of automated and manual scores. Automated and average manual scores showed excellent correlation (concordance correlation coeffecient = 0.925), though automated scoring resulted in significantly more 1-49% scores than manual scoring ( = 0.012). At both 1% and 50% thresholds, automated scores showed a level of concordance with our 'gold standard' (the average of three pathologists' manual scores) similar to that of individual pathologists. Automated scoring showed high sensitivity (95%) but lower specificity (84%) at a 1% threshold, and excellent specificity (100%) but lower sensitivity (71%) at a 50% threshold. We conclude that our automated PD-L1 scoring system for NSCLC has an accuracy similar to that of individual pathologists. The detailed protocol we provide for free open source scoring software and our discussion of the limitations of this technology may facilitate more effective integration of automated scoring into clinical workflows.

摘要

非小细胞肺癌(NSCLC)中PD-L1的表达可预测免疫治疗的反应,但PD-L1免疫组化评分显示观察者间存在相当大的变异性。自动化方法可能会使PD-L1评分更一致、更便捷。我们旨在评估使用免费开源的QuPath软件得出的PD-L1评分与三位病理学家的手动评分之间的技术一致性。使用30个NSCLC图像切片训练了一个用于PD-L1评分的分类器。来自69例NSCLC切除病例的207个图像切片的单独测试集用于比较自动评分和手动评分。自动评分与平均手动评分显示出极好的相关性(一致性相关系数=0.925),尽管自动评分得出的1-49%评分显著多于手动评分(P=0.012)。在1%和50%的阈值下,自动评分与我们的“金标准”(三位病理学家手动评分的平均值)的一致性水平与个体病理学家相似。自动评分在1%阈值时显示出高敏感性(95%)但特异性较低(84%),在50%阈值时显示出极好的特异性(100%)但敏感性较低(71%)。我们得出结论,我们的NSCLC自动PD-L1评分系统的准确性与个体病理学家相似。我们为免费开源评分软件提供的详细方案以及我们对该技术局限性的讨论可能有助于将自动评分更有效地整合到临床工作流程中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c3/8262183/0bafee1859c9/pore-27-609717-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验