Azmani Khalid, Besora Maria, Soriano-López Joaquín, Landolsi Meriem, Teillout Anne-Lucie, de Oliveira Pedro, Mbomekallé Israël-Martyr, Poblet Josep M, Galán-Mascarós José-Ramón
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans, 16 Tarragona E-43007 Spain.
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili Marcel·lí Domingo 1 E-43007 Tarragona Spain
Chem Sci. 2021 May 19;12(25):8755-8766. doi: 10.1039/d1sc01016f. eCollection 2021 Jul 1.
Cobalt polyoxometalates (Co-POMs) have emerged as promising water oxidation catalysts (WOCs), with the added advantage of their molecular nature despite being metal oxide fragments. In comparison with metal oxides, that do not offer well-defined active surfaces, POMs have a controlled, discrete structure that allows for precise correlations between experiment and computational analyses. Thus, beyond highly active WOCs, POMs are also model systems to gain deeper mechanistic understanding on the oxygen evolution reaction (OER). The tetracobalt Weakley sandwich [Co (HO)(B-α-PWO)] () has been one of the most extensively studied. We have compared its activity with that of the iron analog [Fe (HO)(B-α-PWO)] () looking for the electronic effects determining their activity. Furthermore, the effect of POM nuclearity was also investigated by comparison with the iron- and cobalt-monosubstituted Keggin clusters. Electrocatalytic experiments employing solid state electrodes containing the POMs and the corresponding computational calculations demonstrate that Co-POMs display better WOC activity than the Fe derivatives. Moreover, the activity of POMs is less influenced by their nuclearity, thus Weakley sandwich moieties show slightly improved WOC characteristics than Keggin clusters. In good agreement with the experimental data, computational methods, including p values, confirm that the resting state for Fe-POMs in neutral media corresponds to the (Fe-OH) species. Overall, the proposed reaction mechanism for is analogous to that found for , despite their electronic differences. The potential limiting step is a proton-coupled electron transfer event yielding the active (Fe[double bond, length as m-dash]O) species, which receives a water nucleophilic attack to form the O-O bond. The latter has activation energies slightly higher than those computed for the Co-POMs, in good agreement with experimental observations. These results provide new insights for the accurate understanding of the structure-reactivity relationships of polyoxometalates in particular, and or metal oxides in general, which are of utmost importance for the development of new bottom-up synthetic approaches to design efficient, robust and non-expensive earth-abundant water oxidation catalysts.
钴多金属氧酸盐(Co-POMs)已成为很有前景的析氧催化剂(WOCs),尽管它们是金属氧化物片段,但具有分子性质这一额外优势。与没有明确活性表面的金属氧化物相比,多金属氧酸盐具有可控的离散结构,这使得实验与计算分析之间能够建立精确的关联。因此,除了是高活性的析氧催化剂外,多金属氧酸盐还是用于更深入理解析氧反应(OER)机理的模型体系。四钴Weakley夹心型化合物[Co (HO)(B-α-PWO)]()是研究最广泛的化合物之一。我们将其活性与铁类似物[Fe (HO)(B-α-PWO)]()的活性进行了比较,以寻找决定它们活性的电子效应。此外,还通过与铁和钴单取代的Keggin簇进行比较,研究了多金属氧酸盐核数的影响。采用含有多金属氧酸盐的固态电极进行的电催化实验以及相应的计算表明,Co-POMs比铁衍生物表现出更好的析氧催化剂活性。此外,多金属氧酸盐的活性受其核数的影响较小,因此Weakley夹心部分比Keggin簇表现出略好的析氧催化剂特性。与实验数据高度一致,包括p值在内的计算方法证实,中性介质中铁多金属氧酸盐的静止状态对应于(Fe-OH)物种。总体而言,尽管它们存在电子差异,但所提出的反应机理与发现的机理类似。潜在的限速步骤是质子耦合电子转移事件,产生活性(Fe[双键,长度如m破折号]O)物种,该物种受到水的亲核攻击以形成O-O键。后者的活化能略高于为Co-POMs计算的活化能,与实验观察结果高度一致。这些结果为准确理解多金属氧酸盐特别是金属氧化物的结构-反应性关系提供了新的见解,这对于开发新的自下而上的合成方法以设计高效、耐用且廉价的地球丰富型析氧催化剂至关重要。