Martin-Sabi Mercè, Soriano-López Joaquín, Winter Ross S, Chen Jia-Jia, Vilà-Nadal Laia, Long De-Liang, Galán-Mascarós José Ramón, Cronin Leroy
WestCHEM, School of Chemistry, University of Glasgow, Glasgow, UK.
Institut Català d'Investigació Química (ICIQ), Tarragona, Spain.
Nat Catal. 2018 Mar 8;1(3):208-213. doi: 10.1038/s41929-018-0037-1.
Water oxidation is a key reaction for the conversion of solar energy into chemical fuels, but effective water-oxidation catalysts are often based on rare and costly precious metals such as Pt, Ir or Ru. Developing strategies based on earth-abundant metals is important to explore critical aspects of this reaction, and to see whether different and more efficient applications are possible for energy systems. Herein, we present an approach to tuning a redox-active electrocatalyst based on the doping of molybdenum into the tungsten framework of [Co(HO)(PWO)], known as the Weakley sandwich. The Mo-doped framework was confirmed by X-ray crystallography, electrospray ionization mass spectrometry and inductively coupled plasma optical emission spectrometry studies. The doping of molybdenum into the robust Weakley sandwich framework leads to the oxidation of water at a low onset potential, and with no catalyst degradation, whereby the overpotential of the oxygen evolution reaction is lowered by 188 mV compared with the pure tungsten framework.
水氧化是将太阳能转化为化学燃料的关键反应,但有效的水氧化催化剂通常基于稀有且昂贵的贵金属,如铂、铱或钌。开发基于储量丰富的金属的策略对于探索该反应的关键方面以及了解能源系统是否可能有不同且更高效的应用非常重要。在此,我们提出一种基于将钼掺杂到[Co(HO)(PWO)](即Weakley夹心化合物)的钨骨架中的方法来调控氧化还原活性电催化剂。通过X射线晶体学、电喷雾电离质谱和电感耦合等离子体发射光谱研究证实了钼掺杂骨架。将钼掺杂到坚固的Weakley夹心骨架中会导致水在低起始电位下氧化,且没有催化剂降解,与纯钨骨架相比,析氧反应的过电位降低了188 mV。