Suppr超能文献

通过引入PbTe@C核壳纳米结构提高SnTe的热电性能。

Enhancing the thermoelectric properties of SnTe introducing PbTe@C core-shell nanostructures.

作者信息

Zhang Jingwen, Li Song, Zhu Zhengyi, Wu Zhenwang, Zhang Jiuxing

机构信息

School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.

出版信息

Dalton Trans. 2021 Aug 4;50(30):10515-10523. doi: 10.1039/d1dt01725j.

Abstract

SnTe is an emerging IV-VI metal chalcogenide, but its low Seebeck coefficient and high thermal conductivity mainly originating from the high hole concentration limit its thermoelectric performance. In this work, an amorphous carbon core-shell-coated PbTe nanostructure prepared by a "bottom-up" method is first incorporated into the Sn1-ySbyTe matrix to enhance the thermoelectric performance of SnTe. The square-like PbTe nanoparticles maintain their original cubic morphology and do not grow up obviously after the SPS process due to the coating of the C layer, bringing about the formation of nanopores locally, while Sb alloying induces Sb point defects and Sb-rich precipitates. All these unique hierarchical microstructures finally lead to an ultralow lattice thermal conductivity (∼0.48 W-1 m-1 K-1) approaching amorphous limits (∼0.40 W-1 m-1 K-1). In addition, the incorporation of PbTe@C core-shell nanostructures decreases the carrier mobility obviously with a slight loss in carrier concentration, resulting in the deterioration of electrical properties to a certain extent. As a result, a peak thermoelectric figure of merit (ZT) of 1.07 is achieved for Sn0.89Sb0.11Te-5%PbTe@C at 873 K, which is approximately 154.76% higher than that of pristine SnTe. This work provides a new strategy to enhance the thermoelectric performance of SnTe and also offers a new insight into other related thermoelectric systems.

摘要

SnTe是一种新兴的IV-VI族金属硫族化物,但其塞贝克系数低且热导率高,主要源于高空穴浓度,这限制了其热电性能。在这项工作中,首先将通过“自下而上”方法制备的非晶碳核壳包覆的PbTe纳米结构掺入Sn1-ySbyTe基体中,以提高SnTe的热电性能。由于C层的包覆,方形的PbTe纳米颗粒保持其原始的立方形态,在放电等离子烧结(SPS)过程后没有明显长大,导致局部形成纳米孔,而Sb合金化会诱导Sb点缺陷和富Sb沉淀。所有这些独特的分级微观结构最终导致超低的晶格热导率(约0.48W⁻¹m⁻¹K⁻¹)接近非晶极限(约0.40W⁻¹m⁻¹K⁻¹)。此外,PbTe@C核壳纳米结构的掺入明显降低了载流子迁移率,同时载流子浓度略有损失,导致电学性能在一定程度上恶化。结果,Sn0.89Sb0.11Te-5%PbTe@C在873K时实现了1.07的峰值热电优值(ZT),比原始SnTe高出约154.76%。这项工作为提高SnTe的热电性能提供了一种新策略,也为其他相关热电系统提供了新的见解。

相似文献

10
High Thermoelectric Performance SnTe with a Segregated and Percolated Structure.具有分离和渗透结构的高热电性能碲化锡
ACS Appl Mater Interfaces. 2022 Feb 23;14(7):9192-9202. doi: 10.1021/acsami.1c24075. Epub 2022 Feb 8.

引用本文的文献

1
Advances and Challenges in SnTe-Based Thermoelectrics.基于SnTe的热电材料的进展与挑战
Adv Mater. 2025 Mar;37(10):e2418280. doi: 10.1002/adma.202418280. Epub 2025 Jan 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验