Suppr超能文献

利用半合成训练进行快速深层神经对应,以跟踪和识别 中的神经元。

Fast deep neural correspondence for tracking and identifying neurons in using semi-synthetic training.

机构信息

Department of Physics, Princeton University, Princeton, United States.

Princeton Neuroscience Institute, Princeton University, Princeton, United States.

出版信息

Elife. 2021 Jul 14;10:e66410. doi: 10.7554/eLife.66410.

Abstract

We present an automated method to track and identify neurons in , called 'fast Deep Neural Correspondence' or fDNC, based on the transformer network architecture. The model is trained once on empirically derived semi-synthetic data and then predicts neural correspondence across held-out real animals. The same pre-trained model both tracks neurons across time and identifies corresponding neurons across individuals. Performance is evaluated against hand-annotated datasets, including NeuroPAL (Yemini et al., 2021). Using only position information, the method achieves 79.1% accuracy at tracking neurons within an individual and 64.1% accuracy at identifying neurons across individuals. Accuracy at identifying neurons across individuals is even higher (78.2%) when the model is applied to a dataset published by another group (Chaudhary et al., 2021). Accuracy reaches 74.7% on our dataset when using color information from NeuroPAL. Unlike previous methods, fDNC does not require straightening or transforming the animal into a canonical coordinate system. The method is fast and predicts correspondence in 10 ms making it suitable for future real-time applications.

摘要

我们提出了一种名为“快速深度神经对应”(fast Deep Neural Correspondence,fDNC)的自动追踪和识别神经元的方法,该方法基于转换器网络架构。该模型在经验推导的半合成数据上进行一次训练,然后预测保留的真实动物中的神经对应关系。同一个预训练模型可以在跨时间和跨个体的情况下追踪神经元。该方法的性能与手动标注数据集进行了评估,包括 NeuroPAL(Yemini 等人,2021 年)。仅使用位置信息,该方法在个体内部追踪神经元的准确率达到 79.1%,在跨个体识别神经元的准确率达到 64.1%。当该模型应用于另一个小组(Chaudhary 等人,2021 年)发布的数据集时,跨个体识别神经元的准确率甚至更高(78.2%)。当在 NeuroPAL 中使用颜色信息时,该方法在我们的数据集上的准确率达到 74.7%。与以前的方法不同,fDNC 不需要将动物拉直或转换到规范坐标系。该方法速度快,预测对应关系只需 10 毫秒,非常适合未来的实时应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a1/8367385/3d92382a5fe0/elife-66410-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验