Suppr超能文献

通过连续操作模式的微生物电合成(MES)从 CO 中增强生物生产。

Enhanced bio-production from CO by microbial electrosynthesis (MES) with continuous operational mode.

机构信息

School of Engineering, Newcastle University, Newcastle upon Tyne, UK.

出版信息

Faraday Discuss. 2021 Jul 16;230(0):344-359. doi: 10.1039/d0fd00132e.

Abstract

Technologies able to convert CO2 to various feedstocks for fuels and chemicals are emerging due to the urge of reducing greenhouse gas emissions and de-fossilizing chemical production. Microbial electrosynthesis (MES) has been shown a promising technique to synthesize organic products particularly acetate using microorganisms and electrons. However, the efficiency of the system is low. In this study, we demonstrated the simple yet efficient strategy in enhancing the efficiency of MES by applying continuous feeding regime. Compared to the fed-batch system, continuous operational mode provided better control of pH and constant medium refreshment, resulting in higher acetate production rate and more diverse bio-products, when the cathodic potential of -1.0 V Ag/AgCl and dissolved CO2 were provided. It was observed that hydraulic retention time (HRT) had a direct effect on the pattern of production, acetate production rate and coulombic efficiency. At HRT of 3 days, pH was around 5.2 and acetate was the dominant product with the highest production rate of 651.8 ± 214.2 ppm per day and a significant coulombic efficiency of 90%. However at the HRT of 7 days, pH was lower at around 4.5, and lower but stable acetate production rate of 280 ppm per day and a maximum coulombic efficiency of 80% was obtained. In addition, more diverse and longer chain products, such as butyrate, isovalerate and caproate, were detected with low concentrations only at the HRT of 7 days. Although microbial community analysis showed the change in the planktonic cells communities after switching the fed-batch mode to continuous feeding regime, Acetobacterium still remained as the responsible bacteria for CO2 reduction to acetate, dominating the cathodic biofilm.

摘要

由于减少温室气体排放和摆脱化石燃料化学制品生产的迫切需求,能够将二氧化碳转化为燃料和化学品各种原料的技术正在出现。微生物电化学合成(MES)已被证明是一种使用微生物和电子合成有机产品特别是乙酸盐的很有前途的技术。然而,该系统的效率较低。在这项研究中,我们通过应用连续进料系统展示了提高 MES 效率的简单而有效的策略。与分批进料系统相比,连续操作模式可更好地控制 pH 值和不断更新介质,从而在提供-1.0 V Ag/AgCl 阴极电位和溶解二氧化碳时,实现更高的乙酸盐产率和更多样的生物制品。观察到水力停留时间(HRT)对生产方式、乙酸盐产率和库仑效率有直接影响。在 HRT 为 3 天时,pH 值约为 5.2,乙酸盐是主要产物,日产量最高为 651.8 ± 214.2 ppm,库仑效率显著为 90%。然而,在 HRT 为 7 天时,pH 值较低,约为 4.5,乙酸盐的产量较低但稳定,每天 280 ppm,最大库仑效率为 80%。此外,在 HRT 为 7 天时,仅检测到浓度较低的更多样化和更长链的产物,如丁酸、异丁酸和己酸。尽管微生物群落分析表明在从分批进料模式切换到连续进料模式后,浮游细胞群落发生了变化,但乙酰杆菌仍然是将二氧化碳还原为乙酸盐的负责细菌,主宰着阴极生物膜。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验