Suppr超能文献

微生物电化学合成用于生化产物的抗阻评估对输送方法和 CO 流速变化的影响。

Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO flow rates.

机构信息

Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

出版信息

Bioresour Technol. 2021 Jan;319:124177. doi: 10.1016/j.biortech.2020.124177. Epub 2020 Sep 28.

Abstract

Microbial electrosynthesis (MES) for CO valorization could be influenced by fluctuations in CO mass transfer and flow rates. In this study, we developed an efficient method for CO delivery to cathodic biofilm by directly sparging CO through the pores of ceramic hollow fiber wrapped with Ni-foam/carbon nanotube electrode, and obtained 45% and 77% higher acetate and methane production, respectively. This was followed by the MES stability test in response to fluctuations in CO flow rates varying from 0.3 ml/min to 10 ml/min. The biochemical production exhibited an increasing trend with CO flow rates, achieving higher acetate (47.0 ± 18.4 mmol/m/day) and methane (240.0 ± 32.2 mmol/m/day) generation at 10 ml/min with over 90% coulombic efficiency. The biofilm and suspended biomass, however, showed high resistance to CO flow fluctuations with Methanobacterium and Acetobacterium accounting for 80% of the total microbial community, which suggests the robustness of MES for onsite carbon conversion.

摘要

微生物电合成(MES)可用于 CO 的增值转化,但其 CO 传质和流速的波动可能会对其产生影响。在这项研究中,我们通过直接向包裹着 Ni 泡沫/碳纳米管电极的陶瓷空心纤维的孔隙中鼓入 CO 的方式,开发了一种将 CO 高效输送至阴极生物膜的方法,分别获得了 45%和 77%更高的乙酸盐和甲烷产量。随后,我们针对 CO 流速从 0.3ml/min 变化到 10ml/min 的波动情况进行了 MES 稳定性测试。生化产物的产生呈现出随 CO 流速增加的趋势,在 10ml/min 时获得了更高的乙酸盐(47.0±18.4mmol/m/day)和甲烷(240.0±32.2mmol/m/day)生成量,同时库仑效率超过 90%。然而,生物膜和悬浮生物质对 CO 流速波动具有较强的抵抗力,其中产甲烷菌和乙酸菌占总微生物群落的 80%,这表明 MES 具有现场碳转化的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验