Fruhman Joel M, Astier Hippolyte P A G, Ehrler Bruno, Böhm Marcus L, Eyre Lissa F L, Kidambi Piran R, Sassi Ugo, De Fazio Domenico, Griffiths Jonathan P, Robson Alexander J, Robinson Benjamin J, Hofmann Stephan, Ferrari Andrea C, Ford Christopher J B
Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Department of Engineering, University of Cambridge, Cambridge, UK.
Nat Commun. 2021 Jul 14;12(1):4307. doi: 10.1038/s41467-021-24233-2.
It is challenging for conventional top-down lithography to fabricate reproducible devices very close to atomic dimensions, whereas identical molecules and very similar nanoparticles can be made bottom-up in large quantities, and can be self-assembled on surfaces. The challenge is to fabricate electrical contacts to many such small objects at the same time, so that nanocrystals and molecules can be incorporated into conventional integrated circuits. Here, we report a scalable method for contacting a self-assembled monolayer of nanoparticles with a single layer of graphene. This produces single-electron effects, in the form of a Coulomb staircase, with a yield of 87 ± 13% in device areas ranging from < 800 nm to 16 μm, containing up to 650,000 nanoparticles. Our technique offers scalable assembly of ultra-high densities of functional particles or molecules that could be used in electronic integrated circuits, as memories, switches, sensors or thermoelectric generators.
对于传统的自上而下光刻技术而言,制造尺寸非常接近原子尺度的可重复器件颇具挑战,而相同的分子和非常相似的纳米颗粒能够通过自下而上的方式大量制备,并且能够在表面上进行自组装。挑战在于同时制造与许多这样的小物体的电接触,以便纳米晶体和分子能够被整合到传统的集成电路中。在此,我们报告了一种可扩展的方法,用于使单层石墨烯与自组装的纳米颗粒单层接触。这会产生以库仑阶梯形式出现的单电子效应,在面积从小于800纳米到16微米、包含多达650,000个纳米颗粒的器件区域中,产率为87±13%。我们的技术提供了超高密度功能颗粒或分子的可扩展组装,这些颗粒或分子可用于电子集成电路、作为存储器、开关、传感器或热电发电机。