Zhang Mingyuan, Ramaswamy Harish G, Agarwal Shivani
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.
Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India.
Proc Mach Learn Res. 2020 Jul;119:11246-11255.
The -measure is a widely used performance measure for multi-label classification, where multiple labels can be active in an instance simultaneously (e.g. in image tagging, multiple tags can be active in any image). In particular, the -measure explicitly balances recall (fraction of active labels predicted to be active) and precision (fraction of labels predicted to be active that are actually so), both of which are important in evaluating the overall performance of a multi-label classifier. As with most discrete prediction problems, however, directly optimizing the -measure is computationally hard. In this paper, we explore the question of designing convex surrogate losses that are for the -measure - specifically, that have the property that minimizing the surrogate loss yields (in the limit of sufficient data) a Bayes optimal multi-label classifier for the -measure. We show that the -measure for an -label problem, when viewed as a 2 × 2 loss matrix, has rank at most + 1, and apply a result of Ramaswamy et al. (2014) to design a family of convex calibrated surrogates for the -measure. The resulting surrogate risk minimization algorithms can be viewed as decomposing the multi-label -measure learning problem into + 1 binary class probability estimation problems. We also provide a quantitative regret transfer bound for our surrogates, which allows any regret guarantees for the binary problems to be transferred to regret guarantees for the overall -measure problem, and discuss a connection with the algorithm of Dembczynski et al. (2013). Our experiments confirm our theoretical findings.
F1度量是多标签分类中广泛使用的性能度量,其中在一个实例中多个标签可以同时有效(例如在图像标记中,任何图像中都可以有多个标签有效)。特别地,F1度量明确地平衡了召回率(预测为有效的有效标签的比例)和精确率(预测为有效且实际有效的标签的比例),这两者在评估多标签分类器的整体性能时都很重要。然而,与大多数离散预测问题一样,直接优化F1度量在计算上是困难的。在本文中,我们探讨设计与F1度量相关的凸代理损失的问题——具体来说,这些代理损失具有这样的性质:最小化代理损失(在足够数据的极限情况下)会产生针对F1度量的贝叶斯最优多标签分类器。我们表明,当将n标签问题的F1度量视为一个2×2损失矩阵时,其秩至多为n + 1,并应用Ramaswamy等人(2014年)的一个结果来设计一族针对F1度量的凸校准代理。由此产生的代理风险最小化算法可以看作是将多标签F1度量学习问题分解为n + 1个二分类概率估计问题。我们还为我们的代理提供了一个定量遗憾转移界,这使得任何二分类问题的遗憾保证都可以转移到整体F1度量问题的遗憾保证上,并讨论了与Dembczynski等人(2013年)算法的联系。我们的实验证实了我们的理论发现。