Suppr超能文献

基于复合可生物降解铋锰放射增敏剂的肿瘤微环境调控平台抑制耐辐射缺氧肿瘤。

Tumor Microenvironment Modulation Platform Based on Composite Biodegradable Bismuth-Manganese Radiosensitizer for Inhibiting Radioresistant Hypoxic Tumors.

机构信息

Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.

Department of Research and Development & Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China.

出版信息

Small. 2021 Aug;17(34):e2101015. doi: 10.1002/smll.202101015. Epub 2021 Jul 15.

Abstract

Solid tumors possess a unique internal environment with high-level thiols (mainly glutathione), over-expressed H O , and low oxygen partial pressure, which severely restrict the radiotherapy (RT) efficacy. To overcome the imperfections of RT alone, there is vital to design a multifunctional radiosensitizer that simultaneously achieves multimodal therapy and tumor microenvironment (TME) regulation. Bismuth (Bi)-based nanospheres are wrapped in the MnO layer to form core-shell-structured radiosensitizer (Bi@Mn) that can effectively load docetaxel (DTX). The solubility of Bi@Mn-DTX is further improved via folic acid-modified amphiphilic polyethylene glycol (PFA). Bi@Mn-DTX-PFA can specifically respond to the TME to realize multimodal therapy. Primarily, the outer MnO layer responds with H O and glutathione to release oxygen and generate •OH, thereby alleviating hypoxia and achieving chemodynamic therapy (CDT). Afterward, the strong coordination between Bi and deprotonated thiol groups in glutathione allows the mesoporous Bi-containing core bonding with glutathione to form a water-soluble complex. These actions conduce Bi@Mn-DTX-PFA degradation, further releasing DTX to implement chemotherapy (CHT). In addition, the degradation in vivo and tumor enrichment of Bi@Mn-PFA are explored via T -weighted magnetic resonance and computed tomography imaging. The biodegradable composite Bi@Mn-DTX-PFA can simultaneously modulate the TME and achieve multimodal treatment (RT/CDT/CHT) for hypoxic tumors.

摘要

实体瘤具有独特的内部环境,其中含有高水平的巯基(主要是谷胱甘肽)、过表达的 H O 和低氧分压,这严重限制了放射治疗(RT)的疗效。为了克服单独 RT 的局限性,设计一种同时实现多模态治疗和肿瘤微环境(TME)调节的多功能增敏剂至关重要。将铋(Bi)基纳米球包裹在 MnO 层中,形成核壳结构的增敏剂(Bi@Mn),可有效负载多西他赛(DTX)。通过叶酸修饰的两亲性聚乙二醇(PFA)进一步提高了 Bi@Mn-DTX 的溶解度。Bi@Mn-DTX-PFA 可以特异性地响应 TME 以实现多模态治疗。首先,外层的 MnO 层与 H O 和谷胱甘肽反应,释放氧气并生成•OH,从而缓解缺氧并实现化学动力学治疗(CDT)。然后,Bi 与谷胱甘肽中去质子巯基之间的强配位作用使含有介孔 Bi 的核与谷胱甘肽键合形成水溶性络合物。这些作用导致 Bi@Mn-DTX-PFA 降解,进一步释放 DTX 以实现化疗(CHT)。此外,通过 T 加权磁共振和计算机断层扫描成像研究了 Bi@Mn-PFA 的体内降解和肿瘤富集情况。可生物降解的复合材料 Bi@Mn-DTX-PFA 可以同时调节 TME 并实现缺氧肿瘤的多模态治疗(RT/CDT/CHT)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验